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This introduction to arithmetic coding is divided in two parts. The first 
explains how and why arithmetic coding works. We start presenting it in 
very general terms, so that its simplicity is not lost under layers of 
implementation details. Next, we show some of its basic properties, 
which are later used in the computational techniques required for a 
practical implementation. 

In the second part, we cover the practical implementation aspects, 
including arithmetic operations with low precision, the subdivision of 
coding and modeling, and the realization of adaptive encoders. We also 
analyze the arithmetic coding computational complexity, and techniques 
to reduce it. 

We start some sections by first introducing the notation and most of the 
mathematical definitions. The reader should not be intimidated if at first 
their motivation is not clear: these are always followed by examples and 
explanations. 
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Chapter 1

Arithmetic Coding Principles

1.1 Data Compression and Arithmetic Coding

Compression applications employ a wide variety of techniques, have quite different degrees
of complexity, but share some common processes. Figure 1.1 shows a diagram with typical
processes used for data compression. These processes depend on the data type, and the
blocks in Figure 1.1 may be in different order or combined. Numerical processing, like
predictive coding and linear transforms, is normally used for waveform signals, like images
and audio [20, 35, 36, 48, 55]. Logical processing consists of changing the data to a form
more suited for compression, like run-lengths, zero-trees, set-partitioning information, and
dictionary entries [3, 20, 38, 40, 41, 44, 47, 55]. The next stage, source modeling, is used to
account for variations in the statistical properties of the data. It is responsible for gathering
statistics and identifying data contexts that make the source models more accurate and
reliable [14, 28, 29, 45, 46, 49, 53].

What most compression systems have in common is the fact that the final process is
entropy coding, which is the process of representing information in the most compact form.
It may be responsible for doing most of the compression work, or it may just complement
what has been accomplished by previous stages.

When we consider all the different entropy-coding methods, and their possible applica-
tions in compression applications, arithmetic coding stands out in terms of elegance, effec-
tiveness and versatility, since it is able to work most efficiently in the largest number of
circumstances and purposes. Among its most desirable features we have the following.

• When applied to independent and identically distributed (i.i.d.) sources, the compres-
sion of each symbol is provably optimal (Section 1.5).

• It is effective in a wide range of situations and compression ratios. The same arithmetic
coding implementation can effectively code all the diverse data created by the different
processes of Figure 1.1, such as modeling parameters, transform coefficients, signaling,
etc. (Section 1.6.1).

• It simplifies automatic modeling of complex sources, yielding near-optimal or signifi-
cantly improved compression for sources that are not i.i.d (Section 1.6.3).

1
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Figure 1.1: System with typical processes for data compression. Arithmetic coding is
normally the final stage, and the other stages can be modeled as a single data source Ω.

• Its main process is arithmetic, which is supported with ever-increasing efficiency by all
general-purpose or digital signal processors (CPUs, DSPs) (Section 2.3).

• It is suited for use as a “compression black-box” by those that are not coding experts
or do not want to implement the coding algorithm themselves.

Even with all these advantages, arithmetic coding is not as popular and well understood
as other methods. Certain practical problems held back its adoption.

• The complexity of arithmetic operations was excessive for coding applications.

• Patents covered the most efficient implementations. Royalties and the fear of patent
infringement discouraged arithmetic coding in commercial products.

• Efficient implementations were difficult to understand.

However, these issues are now mostly overcome. First, the relative efficiency of computer
arithmetic improved dramatically, and new techniques avoid the most expensive operations.
Second, some of the patents have expired (e.g., [11, 16]), or became obsolete. Finally, we
do not need to worry so much about complexity-reduction details that obscure the inherent
simplicity of the method. Current computational resources allow us to implement simple,
efficient, and royalty-free arithmetic coding.

1.2 Notation

Let Ω be a data source that puts out symbols sk coded as integer numbers in the set
{0, 1, . . . , M − 1}, and let S = {s1, s2, . . . , sN} be a sequence of N random symbols put out
by Ω [1, 4, 5, 21, 55, 56]. For now, we assume that the source symbols are independent and
identically distributed [22], with probability

p(m) = Prob{sk = m}, m = 0, 1, 2, . . . , M − 1, k = 1, 2, . . . , N. (1.1)
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We also assume that for all symbols we have p(m) 6= 0, and define c(m) to be the
cumulative distribution,

c(m) =
m−1∑

s=0

p(s), m = 0, 1, . . . ,M. (1.2)

Note that c(0) ≡ 0, c(M) ≡ 1, and

p(m) = c(m + 1)− c(m). (1.3)

We use bold letters to represent the vectors with all p(m) and c(m) values, i.e.,

p = [ p(0) p(1) · · · p(M − 1) ],

c = [ c(0) c(1) · · · c(M − 1) c(M) ].

We assume that the compressed data (output of the encoder) is saved in a vector (buffer) d.
The output alphabet has D symbols, i.e., each element in d belongs to set {0, 1, . . . , D− 1}.

Under the assumptions above, an optimal coding method [1] codes each symbol s from
Ω with an average number of bits equal to

B(s) = − log2 p(s) bits. (1.4)

Example 1

/ Data source Ω can be a file with English text: each symbol from this source is a
single byte representatinh a character. This data alphabet contains M = 256 sym-
bols, and symbol numbers are defined by the ASCII standard. The probabilities of
the symbols can be estimated by gathering statistics using a large number of English
texts. Table 1.1 shows some characters, their ASCII symbol values, and their esti-
mated probabilities. It also shows the number of bits required to code symbol s in an
optimal manner, − log2 p(s). From these numbers we conclude that, if data symbols in
English text were i.i.d., then the best possible text compression ratio would be about
2:1 (4 bits/symbol). Specialized text compression methods [8, 10, 29, 41] can yield
significantly better compression ratios because they exploit the statistical dependence
between letters. .

This first example shows that our initial assumptions about data sources are rarely found
in practical cases. More commonly, we have the following issues.

1. The source symbols are not identically distributed.

2. The symbols in the data sequence are not independent (even if uncorrelated) [22].

3. We can only estimate the probability values, the statistical dependence between sym-
bols, and how they change in time.

However, in the next sections we show that the generalization of arithmetic coding to
time-varying sources is straightforward, and we explain how to address all these practical
issues.
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Character ASCII Probability Optimal number
Symbol of bits

s p(s) − log2 p(s)
Space 32 0.1524 2.714

, 44 0.0136 6.205
. 46 0.0056 7.492
A 65 0.0017 9.223
B 66 0.0009 10.065
C 67 0.0013 9.548
a 97 0.0595 4.071
b 98 0.0119 6.391
c 99 0.0230 5.441
d 100 0.0338 4.887
e 101 0.1033 3.275
f 102 0.0227 5.463
t 116 0.0707 3.823
z 122 0.0005 11.069

Table 1.1: Estimated probabilities of some letters and punctuation marks in the English
language. Symbols are numbered according to the ASCII standard.

1.3 Code Values

Arithmetic coding is different from other coding methods for which we know the exact
relationship between the coded symbols and the actual bits that are written to a file. It
codes one data symbol at a time, and assigns to each symbol a real-valued number of bits
(see examples in the last column of Table 1.1). To figure out how this is possible, we have to
understand the code value representation: coded messages mapped to real numbers in the
interval [0, 1).

The code value v of a compressed data sequence is the real number with fractional digits
equal to the sequence’s symbols. We can convert sequences to code values by simply adding
“0.” to the beginning of a coded sequence, and then interpreting the result as a number in
base-D notation, where D is the number of symbols in the coded sequence alphabet. For
example, if a coding method generates the sequence of bits 0011000101100, then we have

Code sequence d = [ 0011000101100︸ ︷︷ ︸ ]

Code value v = 0.
︷ ︸︸ ︷
0011000101100 2 = 0.19287109375

(1.5)

where the “2” subscript denotes base-2 notation. As usual, we omit the subscript for decimal
notation.

This construction creates a convenient mapping between infinite sequences of symbols
from a D-symbol alphabet and real numbers in the interval [0, 1), where any data sequence
can be represented by a real number, and vice-versa. The code value representation can be
used for any coding system and it provides a universal way to represent large amounts of
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information independently of the set of symbols used for coding (binary, ternary, decimal,
etc.). For instance, in (1.5) we see the same code with base-2 and base-10 representations.

We can evaluate the efficacy of any compression method by analyzing the distribution
of the code values it produces. From Shannon’s information theory [1] we know that, if a
coding method is optimal, then the cumulative distribution [22] of its code values has to be
a straight line from point (0, 0) to point (1, 1).

Example 2

/ Let us assume that the i.i.d. source Ω has four symbols, and the probabilities of the
data symbols are p = [ 0.65 0.2 0.1 0.05 ]. If we code random data sequences from
this source with two bits per symbols, the resulting code values produce a cumulative
distribution as shown in Figure 1.2, under the label “uncompressed.” Note how the
distribution is skewed, indicating the possibility for significant compression.

The same sequences can be coded with the Huffman code for Ω [2, 4, 21, 55, 56],
with one bit used for symbol “0”, two bits for symbol “1”, and three bits for symbols
“2” and “3”. The corresponding code value cumulative distribution in Figure 1.2
shows that there is substantial improvement over the uncompressed case, but this
coding method is still clearly not optimal. The third line in Figure 1.2 shows that
the sequences compressed with arithmetic coding simulation produce a code value
distribution that is practically identical to the optimal. .

The straight-line distribution means that if a coding method is optimal then there is
no statistical dependence or redundancy left in the compressed sequences, and consequently
its code values are uniformly distributed on the interval [0, 1). This fact is essential for
understanding of how arithmetic coding works. Moreover, code values are an integral part
of the arithmetic encoding/decoding procedures, with arithmetic operations applied to real
numbers that are directly related to code values.

One final comment about code values: two infinitely long different sequences can corre-
spond to the same code value. This follows from the fact that for any D > 1 we have

∞∑

n=k

(D − 1)D−n = D1−k. (1.6)

For example, if D = 10 and k = 2, then (1.6) is the equality 0.09999999 . . . = 0.1. This
fact has no important practical significance for coding purposes, but we need to take it into
account when studying some theoretical properties of arithmetic coding.

1.4 Arithmetic Coding

1.4.1 Encoding Process

In this section we first introduce the notation and equations that describe arithmetic encod-
ing, followed by a detailed example. Fundamentally, the arithmetic encoding process consists
of creating a sequence of nested intervals in the form Φk(S) = [ αk, βk ) , k = 0, 1, . . . , N,
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Figure 1.2: Cumulative distribution of code values generated by different coding methods
when applied to the source of Example 2.

where S is the source data sequence, αk and βk are real numbers such that 0 ≤ αk ≤ αk+1,
and βk+1 ≤ βk ≤ 1. For a simpler way to describe arithmetic coding we represent intervals
in the form | b, l 〉, where b is called the base or starting point of the interval, and l the length
of the interval. The relationship between the traditional and the new interval notation is

| b, l 〉 = [ α, β ) if b = α and l = β − α. (1.7)

The intervals used during the arithmetic coding process are, in this new notation, defined
by the set of recursive equations [5, 13]

Φ0(S) = | b0, l0 〉 = | 0, 1 〉 , (1.8)

Φk(S) = | bk, lk 〉 = | bk−1 + c(sk) lk−1, p(sk) lk−1 〉 , k = 1, 2, . . . , N. (1.9)

The properties of the intervals guarantee that 0 ≤ bk ≤ bk+1 < 1, and 0 < lk+1 < lk ≤ 1.
Figure 1.3 shows a dynamic system corresponding to the set of recursive equations (1.9).
We later explain how to choose, at the end of the coding process, a code value in the final
interval, i.e., v̂(S) ∈ ΦN(S).

The coding process defined by (1.8) and (1.9), also called Elias coding, was first described
in [5]. Our convention of representing an interval using its base and length has been used
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Figure 1.3: Dynamic system for updating arithmetic coding intervals.

since the first arithmetic coding papers [12, 13]. Other authors have intervals represented
by their extreme points, like [base, base+length), but there is no mathematical difference
between the two notations.

Example 3

/ Let us assume that source Ω has four symbols (M = 4), the probabilities and distri-
bution of the symbols are p = [ 0.2 0.5 0.2 0.1 ] and c = [ 0 0.2 0.7 0.9 1 ], and the
sequence of (N = 6) symbols to be encoded is S = {2, 1, 0, 0, 1, 3}.

Figure 1.4 shows graphically how the encoding process corresponds to the selection
of intervals in the line of real numbers. We start at the top of the figure, with the
interval [0, 1), which is divided into four subintervals, each with length equal to the
probability of the data symbols. Specifically, interval [0, 0.2) corresponds to s1 = 0,
interval [0.2, 0.7) corresponds to s1 = 1, interval [0.7, 0.9) corresponds to s1 = 2,
and finally interval [0.9, 1) corresponds to s1 = 3. The next set of allowed nested
subintervals also have length proportional to the probability of the symbols, but their
lengths are also proportional to the length of the interval they belong to. Furthermore,
they represent more than one symbol value. For example, interval [0, 0.04) corresponds
to s1 = 0, s2 = 0, interval [0.04, 0.14) corresponds to s1 = 0, s2 = 1, and so on.

The interval lengths are reduced by factors equal to symbol probabilities in order
to obtain code values that are uniformly distributed in the interval [0, 1) (a necessary
condition for optimality, as explained in Section 1.3). For example, if 20% of the
sequences start with symbol “0”, then 20% of the code values must be in the interval
assigned to those sequences, which can only be achieved if we assign to the first symbol
“0” an interval with length equal to its probability, 0.2. The same reasoning applies to
the assignment of the subinterval lengths: every occurrence of symbol “0” must result
in a reduction of the interval length to 20% its current length. This way, after encoding



8 1.4. Arithmetic Coding

Iteration Input Interval Interval Decoder Output
Symbol base length updated value symbol

k sk bk lk ṽk = v̂−bk−1

lk−1
ŝk

0 — 0 1 — —
1 2 0.7 0.2 0.74267578125 2
2 1 0.74 0.1 0.21337890625 1
3 0 0.74 0.02 0.0267578125 0
4 0 0.74 0.004 0.1337890625 0
5 1 0.7408 0.002 0.6689453125 1
6 3 0.7426 0.0002 0.937890625 3
7 — — — 0.37890625 1
8 — — — 0.3578125 1

Table 1.2: Arithmetic encoding and decoding results for Examples 3 and 4. The last two
rows show what happens when decoding continues past the last symbol.

several symbols the distribution of code values should be a very good approximation
of a uniform distribution.

Equations (1.8) and (1.9) provide the formulas for the sequential computation of
the intervals. Applying them to our example we obtain:

Φ0(S) = | 0, 1 〉 = [ 0, 1 ) ,

Φ1(S) = | b0 + c(2)l0, p(2)l0 〉 = | 0 + 0.7× 1, 0.2× 1 〉 = [ 0.7, 0.9 ) ,

Φ2(S) = | b1 + c(1)l1, p(1)l1 〉 = | 0.7 + 0.2× 0.2, 0.5× 0.2 〉 = [ 0.74, 0.84 ) ,
...

Φ6(S) = | b5 + c(3)l5, p(3)l5 〉 = | 0.7426, 0.0002 〉 = [ 0.7426, 0.7428 ) ,

The list with all the encoder intervals is shown in the first four columns of Table 1.2.
Since the intervals quickly become quite small, in Figure 1.4 we have to graphically
magnify them (twice) so that we can see how the coding process continues. Note that
even though the intervals are shown in different magnifications, the intervals values
do not change, and the process to subdivide intervals continues in exactly the same
manner. .

The final task in arithmetic encoding is to define a code value v̂(S) that will represent
data sequence S. In the next section we show how the decoding process works correctly
for any code value v̂ ∈ ΦN(S). However, the code value cannot be provided to the decoder
as a pure real number. It has to be stored or transmitted, using a conventional number
representation. Since we have the freedom to choose any value in the final interval, we
want to choose the values with the shortest representation. For instance, in Example 3, the
shortest decimal representation comes from choosing v̂ = 0.7427, and the shortest binary
representation is obtained with v̂ = 0.101111100012 = 0.74267578125.



1. Arithmetic Coding Principles 9

 
 
  0 1 

0.74 0.84 

0.7 0.9 0.2 

0.744 
 
 

0.74 0.84 0.76 

0.7426 

0.7408 0.744 0.7428 0.74 

v̂  = 0.74267578125 

v̂  = 0.74267578125 

ΦΦΦΦ0 
 

s1 = 2 s1 = 0 s1 = 1 s1 = 3 

ΦΦΦΦ1 
 

ΦΦΦΦ2 
 

ΦΦΦΦ5 
 

ΦΦΦΦ3 

ΦΦΦΦ6 

s2 = 1 

s3 =0 

s4 = 0 

s5 = 1 

s6 = 3 

ΦΦΦΦ4 

Figure 1.4: Graphical representation of the arithmetic coding process of Example 3: the
interval Φ0 = [0, 1) is divided in nested intervals according to the probability of the data
symbols. The selected intervals, corresponding to data sequence S = {2, 1, 0, 0, 1, 3} are
indicated by thicker lines.
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The process to find the best binary representation is quite simple and best shown by
induction. The main idea is that for relatively large intervals we can find the optimal value
by testing a few binary sequences, and as the interval lengths are halved, the number of
sequences to be tested has to double, increasing the number of bits by one. Thus, according
to the interval length lN , we use the following rules:

• If lN ∈ [0.5, 1), then choose code value v̂ ∈ {0, 0.5} = {0.02, 0.12} for a 1-bit representa-
tion.

• If lN ∈ [0.25, 0.5), then choose value v̂ ∈ {0, 0.25, 0.5, 0.75} = {0.002, 0.012, 0.102, 0.112}
for a 2-bit representation.

• If lN ∈ [0.125, 0.25), then choose value v̂ ∈ {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875} =
{0.0002, 0.0012, 0.0102, 0.0112, 0.1002, 0.1012, 0.1102, 0.1112} for a 3-bit representation.

By observing the pattern we conclude that the minimum number of bits required for
representing v̂ ∈ ΦN(S) is

Bmin = d− log2(lN)e bits, (1.10)

where dxe represents the smallest integer greater than or equal to x.
We can test this conclusion observing the results for Example 3 in Table 1.2. The final

interval is lN = 0.0002, and thus Bmin = d− log2(0.0002)e = 13 bits. However, in Example 3
we can choose v̂ = 0.101111100012, and it requires only 11 bits!

The origin of this inconsistency is the fact that we can choose binary representations with
the number of bits given by (10), and then remove the trailing zeros. However, with optimal
coding the average number of bits that can be saved with this process is only one bit, and
for that reason, it is rarely applied in practice.

1.4.2 Decoding Process

In arithmetic coding, the decoded sequence is determined solely by the code value v̂ of the
compressed sequence. For that reason, we represent the decoded sequence as

Ŝ(v̂) = {ŝ1(v̂), ŝ2(v̂), . . . , ŝN(v̂)} . (1.11)

We now show the decoding process by which any code value v̂ ∈ ΦN(S) can be used for
decoding the correct sequence (i.e., Ŝ(v̂) = S). We present the set of recursive equations
that implement decoding, followed by a practical example that provides an intuitive idea of
how the decoding process works, and why it is correct.

The decoding process recovers the data symbols in the same sequence that they were
coded. Formally, to find the numerical solution, we define a sequence of normalized code
values {ṽ1, ṽ2, . . . , ṽN}. Starting with ṽ1 = v̂, we sequentially find ŝk from ṽk, and then we
compute ṽk+1 from ŝk and ṽk.

The recursion formulas are

ṽ1 = v̂, (1.12)

ŝk(v̂) = { s : c(s) ≤ ṽk < c(s + 1)} , k = 1, 2, . . . , N, (1.13)

ṽk+1 =
ṽk − c(ŝk(v̂))

p(ŝk(v̂))
, k = 1, 2, . . . , N − 1. (1.14)
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(In equation (1.13) the colon means “s that satisfies the inequalities.”)
A mathematically equivalent decoding method—which later we show to be necessary

when working with fixed-precision arithmetic—recovers the sequence of intervals created by
the encoder, and searches for the correct value ŝk(v̂) in each of these intervals. It is defined
by

Φ0(Ŝ) = | b0, l0 〉 = | 0, 1 〉 , (1.15)

ŝk(v̂) =

{
s : c(s) ≤ v̂ − bk−1

lk−1

< c(s + 1)

}
, k = 1, 2, . . . , N, (1.16)

Φk(Ŝ) = | bk, lk 〉 = | bk−1 + c(ŝk(v̂)) lk−1, p(ŝk(v̂)) lk−1 〉 , k = 1, 2, . . . , N. (1.17)

The combination of recursion (1.14) with recursion (1.17) yields

ṽk =

v̂ − k−1∑
i=1

c(ŝi)
i−1∏
j=1

p(ŝj)

k−1∏
i=1

p(ŝi)
=

v̂ − bk−1

lk−1

. (1.18)

showing that (1.13) is equivalent to (1.16).

Example 4

/ Let us apply the decoding process to the data obtained in Example 3. In Figure 1.4,
we show graphically the meaning of v̂: it is a value that belongs to all nested intervals
created during coding. The dotted line shows that its position moves as we magnify
the graphs, but the value remains the same. From Figure 1.4, we can see that we can
start decoding from the first interval Φ0(S) = [0, 1): we just have to compare v̂ with
the cumulative distribution c to find the only possible value of ŝ1

ŝ1(v̂) = { s : c(s) ≤ v̂ = 0.74267578125 < c(s + 1)} = 2.

We can use the value of ŝ1 to find out interval Φ1(S), and use it for determining ŝ2.
In fact, we can “remove” the effect of ŝ1 in v̂ by defining the normalized code value

ṽ2 =
v̂ − c(ŝ1)

p(ŝ1)
= 0.21337890625.

Note that, in general, ṽ2 ∈ [0, 1), i.e., it is a value normalized to the initial interval.
In this interval we can use the same process to find

ŝ2(v̂) = { s : c(s) ≤ ṽ2 = 0.21337890625 < c(s + 1)} = 1.

The last columns of Table 1.2 show how the process continues, and the updated
values computed while decoding. We could say that the process continues until ŝ6 is
decoded. However, how can the decoder, having only the initial code value v̂, know
that it is time to stop decoding? The answer is simple: it can’t. We added two extra
rows to Table 1.2 to show that the decoding process can continue normally after the
last symbol is encoded. Below we explain what happens. .
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It is important to understand that arithmetic encoding maps intervals to sets of sequences.
Each real number in an interval corresponds to one infinite sequence. Thus, the sequences
corresponding to Φ6(S) = [0.7426, 0.7428) are all those that start as {2, 1, 0, 0, 1, 3, . . .}. The
code value v̂ = 0.74267578125 corresponds to one such infinite sequence, and the decoding
process can go on forever decoding that particular sequence.

There are two practical ways to inform that decoding should stop:

1. Provide the number of data symbols (N) in the beginning of the compressed file.

2. Use a special symbol as “end-of-message,” which is coded only at the end of the data
sequence, and assign to this symbol the smallest probability value allowed by the
encoder/decoder.

As we explained above, the decoding procedure will always produce a decoded data
sequence. However, how do we know that it is the right sequence? This can be inferred from
the fact that if S and S ′ are sequences with N symbols then

S 6= S ′ ⇔ ΦN(S) ∩ ΦN(S ′) = ∅. (1.19)

This guarantees that different sequences cannot produce the same code value. In Sec-
tion 1.6.6 we show that, due to approximations, we have incorrect decoding if (1.19) is not
satisfied.

1.5 Optimality of Arithmetic Coding

Information theory [1, 4, 5, 21, 32, 55, 56] shows us that the average number of bits needed
to code each symbol from a stationary and memoryless source Ω cannot be smaller than its
entropy H(Ω), defined by

H(Ω) = −
M−1∑

m=0

p(m) log2 p(m) bits/symbol. (1.20)

We have seen that the arithmetic coding process generates code values that are uniformly
distributed across the interval [0, 1). This is a necessary condition for optimality, but not a
sufficient one. In the interval ΦN(S) we can choose values that require an arbitrarily large
number of bits to be represented, or choose code values that can be represented with the
minimum number of bits, given by equation (1.10). Now we show that the latter choice
satisfies the sufficient condition for optimality.

To begin, we have to consider that there is some overhead in a compressed file, which
may include

• Extra bits required for saving v̂ with an integer number of bytes.

• A fixed or variable number of bits representing the number of symbols coded.

• Information about the probabilities (p or c).
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Assuming that the total overhead is a positive number σ bits, we conclude from (1.10)
that the number of bits per symbol used for coding a sequence S should be bounded by

BS ≤ σ − log2(lN)

N
bits/symbol. (1.21)

It follows from (1.9) that

lN =
N∏

k=1

p(sk), (1.22)

and thus

BS ≤
σ − N∑

k=1
log2 p(sk)

N
bits/symbol. (1.23)

Defining E {·} as the expected value operator, the expected number of bits per symbol
is

B̄ = E{BS} ≤
σ − N∑

k=1
E {log2 p(sk)}

N
=

σ − N∑
k=1

M−1∑
m=0

p(m) log2 p(m)

N
(1.24)

≤ H(Ω) +
σ

N
Since the average number of bits per symbol cannot be smaller than the entropy, we have

H(Ω) ≤ B̄ ≤ H(Ω) +
σ

N
, (1.25)

and it follows that
lim

N→∞

{
B̄

}
= H(Ω), (1.26)

which means that arithmetic coding indeed achieves optimal compression performance.
At this point we may ask why arithmetic coding creates intervals, instead of single code

values. The answer lies in the fact that arithmetic coding is optimal not only for binary
output—but rather for any output alphabet. In the final interval we find the different code
values that are optimal for each output alphabet. Here is an example of use with non-binary
outputs.

Example 5

/ Consider transmitting the data sequence of Example 3 using a communications system
that conveys information using three levels, {–V, 0, +V} (actually used in radio remote
controls). Arithmetic coding with ternary output can simultaneously compress the
data and convert it to the proper transmission format.

The generalization of (1.10) for a D-symbol output alphabet is

Bmin(lN , D) = d− logD(lN)e symbols. (1.27)

Thus, using the results in Table 1.2, we conclude that we need d− log3(0.0002)e = 8
ternary symbols. We later show how to use standard arithmetic coding to find that
the shortest ternary representation is v̂3 = 0.202001113 ≈ 0.742722146, which means
that the sequence S = {2, 1, 0, 0, 1, 3} can be transmitted as the sequence of electrical
signals {+V, 0, +V, 0, 0, –V, –V, –V}. .
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1.6 Arithmetic Coding Properties

1.6.1 Dynamic Sources

In Section 1.2 we assume that the data source Ω is stationary, so we have one set of symbol
probabilities for encoding and decoding all symbols in the data sequence S. Now, with an
understanding of the coding process, we generalize it for situations where the probabilities
change for each symbol coded, i.e., the k-th symbol in the data sequence S is a random
variable with probabilities pk and distribution ck.

The only required change in the arithmetic coding process is that instead of using (1.9)
for interval updating, we should use

Φk(S) = | bk, lk 〉 = | bk−1 + ck(sk) lk−1, pk(sk) lk−1 〉 , k = 1, 2, . . . , N. (1.28)

To understand the changes in the decoding process, remember that the process of working
with updated code values is equivalent to “erasing” all information about past symbols, and
decoding in the [0, 1) interval. Thus, the decoder only has to use the right set of probabilities
for that symbol to decode it correctly. The required changes to (1.16) and (1.17) yield

ŝk(v̂) =

{
s : ck(s) ≤ v̂ − bk−1

lk−1

< ck(s + 1)

}
, k = 1, 2, . . . , N, (1.29)

Φk(S) = | bk, lk 〉 = | bk−1 + ck(ŝk(v̂)) lk−1, pk(ŝk(v̂)) lk−1 〉 , k = 1, 2, . . . , N. (1.30)

Note that the number of symbols used at each instant can change. Instead of having a sin-
gle input alphabet with M symbols, we have a sequence of alphabet sizes {M1,M2, . . . , MN}.

1.6.2 Encoder and Decoder Synchronized Decisions

In data compression an encoder can change its behavior (parameters, coding algorithm, etc.)
while encoding a data sequence, as long as the decoder uses the same information and the
same rules to change its behavior. In addition, these changes must be “synchronized,” not
in time, but in relation to the sequence of data source symbols.

For instance, in Section 1.6.1, we assume that the encoder and decoder are synchronized
in their use of varying sets of probabilities. Note that we do not have to assume that all the
probabilities are available to the decoder when it starts decoding. The probability vectors
can be updated with any rule based on symbol occurrences, as long as pk is computed from
the data already available to the decoder, i.e., {ŝ1, ŝ2, . . . , ŝk−1}. This principle is used for
adaptive coding, and it is covered in Section 2.2.

This concept of synchronization is essential for arithmetic coding because it involves a
nonlinear dynamic system (Figure 1.3), and error accumulation leads to incorrect decoding,
unless the encoder and decoder use exactly the same implementation (same precision, number
of bits, rounding rules, equations, tables, etc.). In other words, we can make arithmetic
coding work correctly even if the encoder makes coarse approximations, as long as the decoder
makes exactly the same approximations. We have already seen an example of a choice based
on numerical stability: equations (1.16) and (1.17) enable us to synchronize the encoder
and decoder because they use the same interval updating rules used by (1.9), while (1.13)
and (1.14) use a different recursion.
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Figure 1.5: Separation of coding and source modeling tasks. Arithmetic encoding and
decoding process intervals, while source modeling chooses the probability distribution for
each data symbol.

1.6.3 Separation of Coding and Source Modeling

There are many advantages for separating the source modeling (probabilities estimation)
and the coding processes [14, 25, 29, 38, 45, 51, 53]. For example, it allows us to develop
complex compression schemes without worrying about the details in the coding algorithm,
and/or use them with different coding methods and implementations.

Figure 1.5 shows how the two processes can be separated in a complete system for arith-
metic encoding and decoding. The coding part is responsible only for updating the intervals,
i.e., the arithmetic encoder implements recursion (1.28), and the arithmetic decoder imple-
ments (1.29) and (1.30). The encoding/decoding processes use the probability distribution
vectors as input, but do not change them in any manner. The source modeling part is respon-
sible for choosing the distribution ck that is used to encode/decode symbol sk. Figure 1.5
also shows that a delay of one data symbol before the source-modeling block guarantees that
encoder and decoder use the same information to update ck.

Arithmetic coding simplifies considerably the implementation of systems like Figure 1.5
because the vector ck is used directly for coding. With Huffman coding, changes in prob-
abilities require re-computing the optimal code, or using complex code updating tech-
niques [9, 24, 26].

1.6.4 Interval Rescaling

Figure 1.4 shows graphically one important property of arithmetic coding: the actual inter-
vals used during coding depend on the initial interval and the previously coded data, but the
proportions within subdivided intervals do not. For example, if we change the initial interval
to Φ0 = | 1, 2 〉 = [ 1, 3 ) and apply (1.9), the coding process remains the same, except that
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all intervals are scaled by a factor of two, and shifted by one.
We can also apply rescaling in the middle of the coding process. Suppose that at a certain

stage m we change the interval according to

b′m = γ (bm − δ), l′m = γ lm, (1.31)

and continue the coding process normally (using (1.9) or (1.28)). When we finish coding
we obtain the interval Φ′

N(S) = | b′N , l′N 〉 and the corresponding code value v′. We can use
the following equations to recover the interval and code value that we would have obtained
without rescaling:

bN =
b′N
γ

+ δ, lN =
l′N
γ

, v̂ =
v′

γ
+ δ. (1.32)

The decoder needs the original code value v̂ to start recovering the data symbols. It
should also rescale the interval at stage m, and thus needs to know m, δ, γ. Furthermore,
when it scales the interval using (1.31), it must scale the code value as well, using

v′ = γ (v̂ − δ). (1.33)

We can generalize the results above to rescaling at stages m ≤ n ≤ . . . ≤ p. In general,
the scaling process, including the scaling of the code values is

b′m = γ1 (bm − δ1), l′m = γ1 lm, v′ = γ1 (v̂ − δ1),
b′′n = γ2 (b′n − δ2), l′′n = γ2 l′n, v′′ = γ2 (v′ − δ2),
...

...
...

b(T )
p = γT (b(T−1)

p − δT ), l(T )
p = γT l(T−1)

p , v(T ) = γT (v(T−1) − δT ).

(1.34)

At the end of the coding process we have interval Φ̄N(S) =
∣∣∣ b̄N , l̄N

〉
and code value v̄.

We recover original values using

ΦN(S) = | bN , lN 〉 =

∣∣∣∣∣ δ1 +
1

γ1

(
δ2 +

1

γ2

(
δ3 +

1

γ3

(
· · ·

(
δT +

b̄N

γT

))))
,

l̄N∏T
i=1 γi

〉
, (1.35)

and

v̂ = δ1 +
1

γ1

(
δ2 +

1

γ2

(
δ3 +

1

γ3

(
· · ·

(
δT +

v̄

γT

))))
. (1.36)

These equations may look awfully complicated, but in some special cases they are quite
easy to use. For instance, in Section 2.1 we show how to use scaling with δi ∈ {0, 1/2} and
γi ≡ 2, and explain the connection between δi and the binary representation of bN and v̂.
The next example shows another simple application of interval rescaling.

Example 6

/ Figure 1.6 shows rescaling applied to Example 3. It is very similar to Figure 1.4, but
instead of having just an enlarged view of small intervals, in Figure 1.6 the intervals
also change. The rescaling parameters δ1 = 0.74 and γ1 = 10 are used after coding two
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symbols, and δ2 = 0 and γ2 = 25 after coding two more symbols. The final interval is
Φ̄6(S) = | 0.65, 0.05 〉, that corresponds to

Φ6(S) =
∣∣∣∣ 0.74 +

1

10

(
0.65

25

)
,

0.05

10× 25

〉
= | 0.7426, 0.0002 〉 ,

and which is exactly the interval obtained in Example 3. .

1.6.5 Approximate Arithmetic

To understand how arithmetic coding can be implemented with fixed-precision we should
note that the requirements for addition and for multiplication are quite different. We show
that if we are willing to lose some compression efficiency, then we do not need exact mul-
tiplications. We use the double brackets ([[ · ]]) around a multiplication to indicate that it
is an approximation, i.e., [[α · β]] ≈ α · β. We define truncation as any approximation such
that [[α · β]] ≤ α · β. The approximation we are considering here can be rounding or trunca-
tion to any precision. The following example shows an alternative way to interpret inexact
multiplications.

Example 7

/ We can see in Figure 1.3 that the arithmetic coding multiplications always occur with
data from the source model—the probability p and the cumulative distribution c.
Suppose we have l = 0.04, c = 0.317, and p = 0.123, with

l × c = 0.04× 0.317 = 0.01268,

l × p = 0.04× 0.123 = 0.00492.

Instead of using exact multiplication we can use an approximation (e.g., with table
look-up and short registers) such that

[[l × c]] = [[0.04× 0.317]] = 0.012,

[[l × p]] = [[0.04× 0.123]] = 0.0048.

Now, suppose that instead of using p and c, we had used another model, with
c′ = 0.3 and p′ = 0.12. We would have obtained

l × c′ = 0.04× 0.3 = 0.012,

l × p′ = 0.04× 0.12 = 0.0048,

which are exactly the results with approximate multiplications. This shows that in-
exact multiplications are mathematically equivalent to making approximations in the
source model and then using exact multiplications. .
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Figure 1.6: Graphical representation of the arithmetic coding process of Example 3 (Fig-
ure 1.4) using numerical rescaling. Note that the code value changes each time the intervals
are rescaled.
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What we have seen in this example is that whatever the approximation used for the
multiplications we can always assume that exact multiplications occur all the time, but with
inexact distributions. We do not have to worry about the exact distribution values as long
as the decoder is synchronized with the encoder, i.e., if the decoder is making exactly the
same approximations as the encoder, then the encoder and decoder distributions must be
identical (just like having dynamic sources, as explained in Section 1.6.1).

The version of (1.9) with inexact multiplications is

Φk(S) = | bk, lk 〉 = | bk−1 + [[c(sk) · lk−1]], [[p(sk) · lk−1]] 〉 , k = 1, 2, . . . , N. (1.37)

We must also replace (1.16) and (1.17) with

ŝk(v̂) = {s : bk−1 + [[c(s) · lk−1]] ≤ v̂ < bk−1 + [[c(s + 1) · lk−1]]} , k = 1, 2, . . . , N, (1.38)
Φk(v̂) = | bk, lk 〉 = | bk−1 + [[c(ŝk(v̂)) · lk−1]], [[p(ŝk(v̂)) · lk−1]] 〉 , k = 1, 2, . . . , N. (1.39)

In the next section we explain which conditions must be satisfied by the approximate
multiplications to have correct decoding.

In equations (1.37) to (1.39) we have one type of approximation occurring from the mul-
tiplication of the interval length by the cumulative distribution, and another approximation
resulting from the multiplication of the interval length by the probability. If we want to use
only one type of approximation, and avoid multiplications between length and probability,
we should update interval lengths according to

lk = (bk−1 + [[c(sk + 1) · lk−1]])− (bk−1 + [[c(sk) · lk−1]]) . (1.40)

The price to pay for inexact arithmetic is degraded compression performance. Arithmetic
coding is optimal only as long as the source model probabilities are equal to the true data
symbol probabilities; any difference reduces the compression ratios.

A quick analysis can give us an idea of how much can be lost. If we use a model with
probability values p′ in a source with probabilities p, the average loss in compression is

∆ =
M−1∑

n=0

p(n) log2

[
p(n)

p′(n)

]
, bits/symbol. (1.41)

This formula is similar to the relative entropy [32], but in this case p′ represents the
values that would result from the approximations, and it is possible to have

∑M−1
n=0 p′(n) 6= 1.

Assuming a relative multiplication error within ε, i.e.,

1− ε ≤ p(n)

p′(n)
≤ 1 + ε, (1.42)

we have

∆ ≤
M−1∑

n=0

p(n) log2(1 + ε) ≈ ε

ln(2)
≈ 1.4 ε bits/symbol. (1.43)

This is not a very tight bound, but it shows that if we can make multiplication accurately
to, say 4 digits, the loss in compression performance can be reasonably small.
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Figure 1.7: Subdivision of a coding interval with approximate multiplications. Due to the
fixed-precision arithmetic, we can only guarantee that all coding intervals are disjoint if we
leave small regions between intervals unused for coding.

1.6.6 Conditions for Correct Decoding

Figure 1.7 shows how an interval is subdivided when using inexact multiplications. In the
figure we show that there can be a substantial difference between, say, bk + c(1) · lk and
bk + [[c(1) · lk]], but this difference does not lead to decoding errors if the decoder uses the
same approximation.

Decoding errors occur when condition (1.19) is not satisfied. Below we show the con-
straints that must be satisfied by approximations, and analyze the three main causes of
coding error to be avoided.

(a) The interval length must be positive and intervals must be disjoint.

The constraints that guarantee that the intervals do not collapse into a single point, and
that the interval length does not become larger than the allowed interval are

0 < lk+1 = [[p(s)·lk]] ≤ (bk + [[c(s + 1) · lk]])−(bk + [[c(s) · lk]]) , s = 0, 1, . . . , M−1. (1.44)

For example, if the approximations can create a situation in which [[c(s + 1) · lk]] <
[[c(s) · lk]], there would be an non-empty intersection of subintervals assigned for s + 1 and
s, and decoder errors would occur whenever a code value belongs to the intersection.

If [[c(s + 1) · lk]] = [[c(s) · lk]] then the interval length collapses to zero, and stays as
such, independently of the symbols coded next. The interval length may become zero due to
arithmetic underflow, when both lk and p(s) = c(s + 1)− c(s) are very small. In Section 2.1
we show that interval rescaling is normally used to keep lk within a certain range to avoid
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this problem, but we also have to be sure that all symbol probabilities are larger than a
minimum value defined by the arithmetic precision (see Sections (2.5) and (A.1)).

Besides the conditions defined by (1.44), we also need to have

[[c(0) · lk]] ≥ 0, and [[c(M) · lk]] ≤ lk. (1.45)

These two condition are easier to satisfy because c(0) ≡ 0 and c(M) ≡ 1, and it is easy to
make such multiplications exact.

(b) Sub-intervals must be nested.
We have to be sure that the accumulation of the approximation errors, as we continue coding
symbols, does not move the interval base to a point outside all the previous intervals. With
exact arithmetic, as we code new symbols, the interval base increases within the interval
assigned to sk+1, but it never crosses the boundary to the interval assigned to sk+1 + 1, i.e.,

bk+n = bk +
k+n−1∑

i=k

c(si+1) · li < bk + c(sk+1 + 1) · lk, for all n ≥ 0. (1.46)

The equivalent condition for approximate arithmetic is that for every data sequence we
must have

bk + [[c(sk+1 + 1) · lk]] > bk + [[c(sk+1) · lk]] +
∞∑

i=k+1

[[c(si+1) · li]]. (1.47)

To determine when (1.47) may be violated we have to assume some limits on the multi-
plication approximations. There should be a non-negative number ε such that

[[c(si+1) · li]](1− ε) < c(si+1) · li. (1.48)

We can combine (1.40), (1.47) and (1.48) to obtain

(1− ε) · lk >
∞∑

i=k+1

c(si+1) · li, (1.49)

which is equal to

1− ε > c(sk+2) + p(sk+3) (c(sk+3) + p(sk+3) (c(sk+4) + p(sk+4) (· · ·))) . (1.50)

To find the maximum for the right-hand side of (1.50) we only have to consider the case
sk+2 = sk+3 = . . . = M − 1 to find

1− ε > c(M − 1) + p(M − 1) (c(M − 1) + p(M − 1) (c(M − 1) + p(M − 1) (· · ·))) , (1.51)

which is equivalent to
1− ε > c(M − 1) + p(M − 1). (1.52)

But we know from (1.3) that by definition c(M − 1) + p(M − 1) ≡ 1! The answer to this
contradiction lies in the fact that with exact arithmetic we would have equality in (1.46)
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only after an infinite number of symbols. With inexact arithmetic it is impossible to have
semi-open intervals that are fully used and match perfectly, so we need to take some extra
precautions to be sure that (1.47) is always satisfied. What equation (1.52) tells us is that
we solve the problem if we artificially decrease the interval range assigned for p(M−1). This
is equivalent to setting aside small regions, indicated as gray areas in Figure 1.7, that are
not used for coding, and serve as a “safety net.”

This extra space can be intentionally added, for example, by replacing (1.40) with

lk = (bk−1 + [[c(sk + 1) · lk−1]])− (bk−1 + [[c(sk) · lk−1]])− ζ (1.53)

where 0 < ζ ¿ 1 is chosen to guarantee correct coding and small compression loss.
The loss in compression caused by these unused subintervals is called “leakage” because

a certain fraction of bits is “wasted” whenever a symbol is coded. This fraction is on average

∆s = p(s) log2

(
p(s)

p′(s)

)
bits, (1.54)

where p(s)/p′(s) > 1 is the ratio between the symbol probability and the size of interval minus
the unused region. With reasonable precision, leakage can be made extremely small. For
instance, if p(s)/p′(s) = 1.001 (low precision) then leakage is less than 0.0015 bits/symbol.

(c) Inverse arithmetic operations must not produce error accumulation.
Note that in (1.38) we define decoding assuming only the additions and multiplications used
by the encoder. We could have used

ŝk(v̂) =

{
s : c(s) ≤

[[
v̂ − bk−1

lk−1

]]
< c(s + 1)

}
, k = 1, 2, . . . , N. (1.55)

However, this introduces approximate subtraction and division, which have to be consis-
tent with the encoder’s approximations. Here we cannot possibly cover all problems related
to inverse operations, but we should say that the main point is to observe error accumulation.

For example, we can exploit the fact that in (1.16) decoding only uses the difference
$k ≡ v̂ − bk, and use the following recursions.

|$0, l0 〉 = | v̂, 1 〉 , (1.56)

ŝk = {s : [[c(s) · lk−1]] ≤ $k < [[c(s + 1) · lk−1]]} , k = 1, 2, . . . , N. (1.57)

|$k, lk 〉 = |$k−1 − [[c(ŝk) · lk−1]], [[p(ŝk) · lk−1]] 〉 , k = 1, 2, . . . , N. (1.58)

However, because we are using a sequence of subtractions in (1.58), this technique works
with integer arithmetic implementations (see Appendix A), but it may not work with floating-
point implementations because of error accumulation.



Chapter 2

Arithmetic Coding Implementation

In this second part, we present the practical implementations of arithmetic coding. We
show how to exploit all the arithmetic coding properties presented in the previous sections
and develop a version that works with fixed-precision arithmetic. First, we explain how to
implement binary extended-precision additions that exploit the arithmetic coding properties,
including the carry propagation process. Next, we present complete encoding and decoding
algorithms based on an efficient and simple form of interval rescaling. We provide the
description for both floating-point and integer arithmetic, and present some alternative ways
of implementing the coding, including different scaling and carry propagation strategies.
After covering the details of the coding process, we study the symbol probability estimation
problem, and explain how to implement adaptive coding by integrating coding and source
modeling. At the end, we analyze the computational complexity of arithmetic coding.

2.1 Coding with Fixed-Precision Arithmetic

Our first practical problem is that the number of digits (or bits) required to represent the
interval length exactly grows when a symbol is coded. For example, if we had p(0) = 0.99
and we repeatedly code symbol 0, we would have

l0 = 1, l1 = 0.99, l2 = 0.9801, l3 = 0.970299, l4 = 0.96059601, . . .

We solve this problem using the fact we do not need exact multiplications by the interval
length (Section 1.6.5). Practical implementations use P -bit registers to store approximations
of the mantissa of the interval length and the results of the multiplications. All bits with
significance smaller than those in the register are assumed to be zero.

With the multiplication precision problem solved, we still have the problem of implement-
ing the additions in (1.37) when there is a large difference between the magnitudes of the
interval base and interval length. We show that rescaling solves the problem, simultaneously
enabling exact addition, and reducing loss of multiplication accuracy. For a binary output,
we can use rescaling in the form of (1.31), with δ ∈ {0, 1/2} and γ = 2 whenever the length
of the interval is below 1/2. Since the decoder needs to know the rescaling parameters, they
are saved in the data buffer d, using bits “0” or “1” to indicate whether δ = 0 or δ = 1/2.

23
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Special case δ = 1 and γ = 1, corresponding to a carry in the binary representation, is
explained later.

To simplify the notation we represent the rescaled intervals simply as | b, l 〉 (no sub-
scripts), and the rescaled code value as v.

l = 2t(lk)lk,

b = frac(2t(lk)bk) = 2t(lk)bk −
⌊
2t(lk)bk

⌋
, (2.1)

v = frac(2t(lk)v̂),

where frac(·) is the fractional part of a number and

t(x) = {n : 2−n−1 < x ≤ 2−n} = b− log2(x)c . (2.2)

Note that under these conditions we have b ∈ [0, 1) and l ∈ (0.5, 1], and for that reason
the rescaling process is called renormalization. Of course, l, b, and v change with k, but this
new notation is more convenient to represent variables in algorithm descriptions or computer
programs.

The binary representations of the interval base and length have the following structure:

lk = 0.0000 . . . 00 0000 . . . 00

(L=2P l)︷ ︸︸ ︷
1aaa . . . aa 000000 . . .2

bk = 0.aaaa . . . aa︸ ︷︷ ︸
settled

0111 . . . 11︸ ︷︷ ︸
outstanding

aaaa . . . aa︸ ︷︷ ︸
(B=2P b)

active

000000 . . .2︸ ︷︷ ︸
trailing zeros

(2.3)

where symbol a represents an arbitrary bit value.

We can see in (2.3) that there is “window” of P active bits, forming integers L and B,
corresponding to the nonzero bits of lk, and the renormalized length l. Because the value
of l is truncated to P -bit precision, there is a set of trailing zeros that does not affect the
additions. The bits to the left of the active bits are those that had been saved in the data
buffer d during renormalization, and they are divided in two sets.

The first set to the left is the set of outstanding bits: those that can be changed due to
a carry from the active bits when new symbols are encoded. The second is the set of bits
that have been settled, i.e., they stay constant until the end of the encoding process. This
happens because intervals are nested, i.e., the code value cannot exceed

bk+n < bk + lk ≤ 0.aaaa . . . aa︸ ︷︷ ︸
settled

1000 . . . 00︸ ︷︷ ︸
changed by carry

aaaa . . . aa︸ ︷︷ ︸
active

00000 . . .2 (2.4)

This equation shows that only the outstanding bits may change due to a carry from the
active bits. Furthermore, inequality (2.4) also shows that there can be only one carry that
would change these bits. If there is a carry, or when it is found that there can be no carry,
these bits become settled. For that reason, the set of outstanding bits always start with 0,
and is possibly followed only by 1s. As new symbols are encoded, all sets move to the right.
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Algorithm 1
Function Arithmetic Encoder (N,S, M, c,d)

1. set { b ← 0; l ← 1; ? Initialize interval
t ← 0; } ? and bit counter

2. for k = 1 to N do ? Encode N data symbols
2.1. Interval Update (sk, b, l,M, c); ? Update interval according to symbol
2.2. if b ≥ 1 then ? Check for carry

2.2.1. set { b ← b− 1; ? Shift interval base
Propagate Carry (t,d); } ? Propagate carry on buffer

2.3. if l ≤ 0.5 then ? If interval is small enough
2.3.1. Encoder Renormalization (b, l, t,d); ? then renormalize interval

3. Code Value Selection (b, t,d); ? Choose final code value
4. return t. ? Return number of code bits

•

2.1.1 Implementation with Buffer Carries

Combining all we have seen, we can present an encoding algorithm that works with fixed-
precision arithmetic. Algorithm 1 shows a function Arithmetic Encoder to encode a sequence
S of N data symbols, following the notation of Section 1.2. This algorithm is very similar
to the encoding process that we used in Section 1.4, but with a renormalization stage after
each time a symbol is coded, and the settled and outstanding bits being saved in the buffer
d. The function returns the number of bits used to compress S.

In Algorithm 1, Step 1 sets the initial interval equal to [0, 1), and initializes the bit
counter t to zero. Note that we use curly braces ({ }) to enclose a set of assignments, and
use symbol “?” before comments. In Step 2, we have the sequential repetition of interval
resizing and renormalizations. Immediately after updating the interval we find out if there is
a carry, i.e., if b ≥ 1, and next we check if further renormalization is necessary. The encoding
process finishes in Step 3, when the final code value v that minimizes the number of code bits
is chosen. In all our algorithms, we assume that functions receive references, i.e., variables
can be changed inside the function called. Below we describe each of the functions used by
Algorithm 1.

There are many mathematically equivalent ways of updating the interval | b, l 〉. We do
not need to have both vectors p and c stored to use (1.9). In Algorithm 2 we use (1.40) to
update length as a difference, and we avoid multiplication for the last symbol (s = M − 1),
since it is more efficient to do the same at the decoder. To simplify notation, we do not
use double brackets to indicate inexact multiplications, but it should be clear that here all
numbers represent the content of CPU registers.

In Step 2.2.1 of Algorithm 1, the function to propagate the carry in the buffer d is
called, changing bits that have been added to d previously, and we shift the interval to have
b < 1. Figure 2.1 shows the carry propagation process. Active bits are shown in bold and
outstanding bits are underlined. Whenever there is a carry, starting from the most recent
bits added to buffer d, we complement all bits until the first 0-bit is complemented, as in
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Algorithm 2
Procedure Interval Update (s, b, l,M, c)

1. if s = M − 1 ? Special case for last symbol
then set y ← b + l; ? end of interval
else set y ← b + l · c(s + 1); ? base of next subinterval

2. set { b ← b + l · c(s); ? Update interval base
l ← y − b; } ? Update interval length as difference

3. return.
•

0

0

1

1

1

1

0

0

1

0 1 1 1 1 1

0 0 0 0 0

1 1

0 0

0 0

1 11

1

1

0 1 1 1

bk−1

[[lk−1 · c(sk)]]

bk = bk−1 + [[lk−1 · c(sk)]]

carry propagation
¾

Figure 2.1: Carry propagation process. Bold letters indicate the active bits, outstanding
bits are underlined, and leftmost bits are settled.

Algorithm 3.
Algorithm 4 implements interval renormalization, where we test if active bits became

outstanding or settled. While the interval length is smaller than 0.5, the interval is rescaled
by a factor of two, and a bit is added to the bit buffer d.

The final encoding stage is the selection of the code value. We use basically the same
process explained at the end of Section 1.4.1, but here we choose a code value belonging to
the rescaled interval. Our choice is made easy because we know that, after renormalization,
we always have 0.5 < l ≤ 1 (see (2.1)), meaning that we only need an extra bit to define the
final code value. In other words: all bits that define the code value are already in buffer d,
and we only need to choose one more bit. The only two choices to consider in the rescaled
interval are v = 0.5 or v = 1.

The decoding procedure, shown in Algorithm 6, gets as input the number of compressed
symbols, N , the number of data symbols, M , and their cumulative distribution c, and the
array with the compressed data bits, d. Its output is the recovered data sequence Ŝ. The
decoder must keep the P -bit register with the code value updated, so it will read P extra
bits at the end of d. We assume that this can be done without problems, and that those
bits had been set to zero.

The interval selection is basically an implementation of (1.38): we want to find the
subinterval that contains the code value v. The implementation that we show in Algorithm 7
has one small shortcut: it combines the symbol decoding with interval updating (1.39) in
a single function. We do a sequential search, starting from the last symbol (s = M − 1),
because we assume that symbols are sorted by increasing probability. The advantages of
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Algorithm 3
Procedure Propagate Carry (t,d)

1. set n ← t; ? Initialize pointer to last outstanding bit
2. while d(n) = 1 do ? While carry propagation

2.1. set { d(n) ← 0; ? complement outstanding 1-bit and
n ← n− 1; } ? move to previous bit

3. set d(n) ← 1; ? Complement outstanding 0-bit
4. return.

•

Algorithm 4
Procedure Encoder Renormalization (b, l, t,d)

1. while l ≤ 0.5 do ? Renormalization loop
1.1. set { t ← t + 1; ? Increment bit counter and

l ← 2l; } ? scale interval length
1.2. if b ≥ 0.5 ? Test most significant bit of interval base

then set { d(t) ← 1; ? Output bit 1
b ← 2(b− 0.5); } ? shift and scale interval base

else set { d(t) ← 0; ? Output bit 0
b ← 2b; } ? scale interval base

2. return.
•

Algorithm 5
Procedure Code Value Selection (b, t,d)

1. set t ← t + 1; ? Increment bit counter
2. if b ≤ 0.5 ? Eenormalized code value selection

then set d(t) ← 1; ? Choose v = 0.5: output bit 1
else set { d(t) ← 0; ? Choose v = 1.0: output bit 0 and

Propagate Carry (t− 1,d); } ? propagate carry
3. return.

•
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Algorithm 6
Procedure Arithmetic Decoder (N, M, c,d, Ŝ)

1. set { b ← 0; l ← 1; ? Initialize interval
v =

∑P
n=1 2−nd(n); ? Read P bits of code value

t ← P ; } ? Initialize bit counter
2. for k = 1 to N do ? Decode N data symbols

2.1. ŝk = Interval Selection (v, b, l, M, c); ? Decode symbol and update interval
2.2. if b ≥ 1 then ? Check for “overflow”

2.2.1. set { b ← b− 1; ? shift interval base
v ← v − 1; } ? shift code value

2.3. if l ≤ 0.5 then ? If interval is small enough
2.3.1. Decoder Renormalization (v, b, l, t,d); ? then renormalize interval

3. return.
•

Algorithm 7
Function Interval Selection (v, b, l,M, c)

1. set { s ← M − 1; ? Start search from last symbol
x ← b + l · c(M − 1); ? Base of search interval
y ← b + l; } ? End of search interval

2. while x > v do ? Sequential search for correct interval
2.1. set { s ← s− 1; ? Decrement symbol by one

y ← x; ? move interval end
x ← b + l · c(s); } ? compute new interval base

3. set { b ← x; ? Update interval base
l ← y − b; } ? Update interval length as difference

4. return s.
•

sorting symbols and more efficient searches are explained in Section 2.2.
In Algorithm 7 we use only arithmetic operations that are exactly equal to those used by

the encoder. This way we can easily guarantee that the encoder and decoder approximations
are exactly the same. Several simplifications can be used to reduce the number of arithmetic
operations (see Appendix A).

The renormalization in Algorithm 8 is similar to Algorithm 4, and in fact all its deci-
sions (comparisons) are meant to be based on exactly the same values used by the encoder.
However, it also needs to rescale the code value in the same manner as the interval base
(compare (1.35) and (1.36)), and it reads its least significant bit (with value 2−P ).

Example 8

/ We applied Algorithms 1 to 8 to the source and data sequence of Example 3, and the
results are shown in Table 2.1. The first column shows what event caused the change
in the interval. If a new symbol σ is coded, then we show it as s = σ, and show
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Algorithm 8
Procedure Decoder Renormalization (v, b, l, t,d)

1. while l ≤ 0.5 do ? Renormalization loop
1.1. if b ≥ 0.5 ? Remove most significant bit

then set { b ← 2(b− 0.5); ? shift and scale interval base
v ← 2(v − 0.5); } ? shift and scale code value

else set { b ← 2b; ? scale interval base
v ← 2v; } ? scale code value

1.2. set { t ← t + 1; ? Increment bit counter
v ← v + 2−P d(t); ? Set least significant bit of code value
l ← 2l; } ? Scale interval length

2. return.
•

the results of Algorithm 2. We indicate the interval changes during renormalization
(Algorithm 4) by showing the value of δ used for rescaling, according to (1.31).

Comparing these results with those in Table 1.2, we see how renormalization keeps
all numerical values within a range that maximizes numerical accuracy. In fact, the
results in Table 2.1 are exact, and can be shown with a few significant digits. Table 2.1
also shows the decoder’s updated code value. Again, these results are exact and agree
with the results shown in Table 1.2. The third column in Table 2.1 shows the contents
of the bit buffer d, and the bits that are added to this buffer every time the interval
is rescaled. Note that carry propagation occurs twice: when s = 3, and when the final
code value v = 1 is chosen by Algorithm 5. .

2.1.2 Implementation with Integer Arithmetic

Even though we use real numbers to describe the principles of arithmetic coding, most
practical implementations use only integer arithmetic. The adaptation is quite simple, as we
just have to assume that the P -bit integers contain the fractional part of the real numbers,
with the following adaptations. (Appendix A has the details.)

• Define B = 2P b, L = 2P l, V = 2P v, and C(s) = 2P c(s). Products can be computed
with 2P bits, and the P least-significant bits are discarded. For example, when up-
dating the interval length we compute L ←

⌊
L · [C(s + 1)− C(s)] · 2−P

⌋
. The length

value l = 1 cannot be represented in this form, but this is not a real problem. We only
need to initialize the scaled length with L ← 2P − 1, and apply renormalization only
when l < 0.5 (strict inequality).

• The carry condition b ≥ 1 is equivalent to B ≥ 2P , which can mean integer overflow.
It can be detected accessing the CPU’s carry flag, or equivalently, checking when the
value of B decreases.

• Since l > 0 we can work with a scaled length equal to L′ = 2P l − 1. This way we can
represent the value l = 1 and have some extra precision if P is small. On the other
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Event Scaled Scaled Bit buffer Scaled Normalized
base length code value code value

b l d v (v − b)/l

— 0 1 0.74267578125 0.74267578125
s = 2 0.7 0.2 0.74267578125
δ = 0.5 0.4 0.4 1 0.4853515625
δ = 0 0.8 0.8 10 0.970703125 0.21337890625
s = 1 0.96 0.4 10 0.970703125
δ = 0.5 0.92 0.8 101 0.94140625 0.0267578125
s = 0 0.92 0.16 101 0.94140625
δ = 0.5 0.84 0.32 1011 0.8828125
δ = 0.5 0.68 0.64 10111 0.765625 0.1337890625
s = 0 0.68 0.128 10111 0.765625
δ = 0.5 0.36 0.256 101111 0.53125
δ = 0 0.72 0.512 1011110 1.0625 0.6689453125
s = 1 0.8224 0.256 1011110 1.0625
δ = 0.5 0.6448 0.512 10111101 1.125 0.937890625
s = 3 1.1056 0.0512 10111101 1.125
δ = 1 0.1056 0.0512 10111110 0.125
δ = 0 0.2112 0.1024 101111100 0.25
δ = 0 0.4224 0.2048 1011111000 0.5
δ = 0 0.8448 0.4096 10111110000 1
δ = 0.5 0.6896 0.8192 101111100001 1
v = 1 1 — 101111100001 —
δ = 1 0 — 101111100010 —
δ = 0 0 — 1011111000100 —

Table 2.1: Results of arithmetic encoding and decoding, with renormalization, applied
to source and data sequence of Example 3. Final code value is v̂ = 0.10111110001002 =
0.74267578125.

hand, updating the length using L′ ←
⌊
(L′ + 1) · [C(s + 1)− C(s)] · 2−P − 1

⌋
requires

two more additions.

When multiplication is computed with 2P bits, we can determine what is the smallest
allowable probability to avoid length underflow. Since renormalization guarantees that L ≥
2P−1, we have (1.44) satisfied if

⌊
[C(s + 1)− C(s)] 2−P L

⌋
≥

⌊
[C(s + 1)− C(s)] 2−1

⌋
≥ 1 ⇒ C(s + 1)− C(s) ≥ 2, (2.5)

Meaning that the minimum probability supported by such implementations with P -bit in-
tegers is p(s) ≥ 21−P .
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Input Encoder Binary Decimal 8-bit
sk Data Representation Representation Registers

— bo 0.000000002 0 00000000
l0 1.000000002 1 11111111

l0 · c(2) 0.101100112 0.69921875 10110011
2 b1 0.10110011002 0.69921875 11001100

l1 0.00110011002 0.19921875 11001011
l1 · c(1) 0.00001010002 0.0390625 00101000

1 b2 0.101111010002 0.73828125 11101000
l2 0.000110011002 0.099609375 11001011

l2 · c(0) 0.000000000002 0 00000000
0 b3 0.10111101000002 0.73828125 10100000

l3 0.00000101000002 0.01953125 10011111
l3 · c(0) 0.00000000000002 0 00000000

0 b4 0.10111101000000002 0.73828125 00000000
l4 0.00000000111110002 0.0037841796875 11110111

l4 · c(1) 0.00000000001100012 0.0007476806640625 00110001
1 b5 0.101111010011000102 0.7390289306640625 01100010

l5 0.000000000111110002 0.00189208984375 11110111
l5 · c(3) 0.000000000110111102 0.0016937255859375 11011110

3 b6 0.101111011010000000002 0.74072265625 00000000
l6 0.000000000000110010002 0.00019073486328125 11000111

— v̂ 0.10111101101012 0.7408447265625 —

Table 2.2: Results of arithmetic encoding and decoding for Example 3 using 8-bit precision
for the arithmetic operations.

Example 9

/ Table 2.2 shows the results of an 8-bit register implementation (P = 8) applied to the
data sequence and source used in Example 3. The table shows the interval | bk, lk 〉 in
base-2 notation to make clear that even though we use 8-bit arithmetic, we are actually
implementing exact additions. Following the conventions in (2.3) and Figure 2.1, we
used bold letters to indicate active bits, and underlined for outstanding bits. We
also show the approximate results of the multiplications lk−1 · c(sk). The last column
shows the binary contents of the registers with active bits. We used L′ = 2P l − 1 to
represent the length. The results are also shown in decimal notation so that they can
be compared with the exact results in Table 1.2. Note that the approximations change
the code value after only 7 bits, but the number of bits required to represent the final
code value is still 13 bits. .
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Algorithm 9
Procedure Encoder Renormalization (b, l, t,d)

1. while l ≤ 1/D do ? Renormalization loop
1.1. set { t ← t + 1; } ? Increment symbol counter

d(t) ← bD · bc; ? Output symbol from most significant bits
b ← D · b− d(t); ? Update interval base
l ← D · l; } ? Scale interval length

2. return.
•

2.1.3 Efficient Output

Implementations with short registers (as in Example 9) require renormalizing the intervals as
soon as possible to avoid losing accuracy and compression efficacy. We can see in Table 2.1
that, as a consequence, intervals may be rescaled many times whenever a symbol is coded.
Even though rescaling can be done with bit shifts instead of multiplications, this process
still requires many CPU cycles (see Section 2.3).

If we use longer registers (e.g., 16 bits or more), we can increase efficiency significantly
by moving more than one bit to the output buffer d whenever rescaling. This process is
equivalent to have an encoder output alphabet with D symbols, where D is a power of two.
For example, moving groups of 1, 2, 4, or 8 bits at a time, corresponds to output alphabets
with D = 2, 4, 16, and 256 symbols, respectively. Carry propagation and the use of the
output buffer d also become more efficient with larger D.

It is not difficult to modify the algorithms in Section 2.1.1 for a D-symbol output. Renor-
malization is the most important change. The rescaling parameters defined by (1.31) are such
that δ ∈ {0, 1/D, 2/D, . . . , 1} and γ ≡ D. Again, δ = 1 corresponds to a carry. Algorithm 9
has the required changes to Algorithm 4, and the corresponding changes in the decoder
renormalization are shown in Algorithm 10. In Appendix A we have an integer arithmetic
implementation with D-symbol output, with the carry propagation in Algorithm 25.

We also need to change the equations that define the normalized intervals, (2.1) and (2.2),
to

l = Dt(lk)lk,

b = frac(Dt(lk)bk) = Dt(lk)bk −
⌊
Dt(lk)bk

⌋
, (2.6)

v = frac(Dt(lk)v̂),

and
t(x) = {n : D−n−1 < x ≤ D−n} = b− logD(x)c . (2.7)

Example 10

/ Table 2.3 shows an example of how the arithmetic coding renormalization changes
when D = 16. Again, the source and data sequence are those of Example 3. Com-
paring these results with those of Example 8 (Table 2.1), we can see the substantial
reduction in the number of times the intervals are rescaled. .
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Algorithm 10
Procedure Decoder Renormalization (v, b, l, t,d)

1. while l ≤ 1/D do ? Renormalization loop
1.1. set { t ← t + 1; } ? Increment symbol counter

a ← bD · bc; ? Most significant digit
b ← D · b− a; ? Update interval base
v ← D · v − a + D−P d(t); ? Update code value
l ← D · l; } ? Scale interval length

3. return.
•

Event Scaled Scaled Bit buffer Scaled code
base length value

b l d v

— 0 1 0.74267578125
s = 2 0.7 0.2 0.74267578125
s = 1 0.74 0.1 0.74267578125
s = 0 0.74 0.02 0.74267578125
δ = 11/16 0.84 0.32 B 0.8828125
s = 0 0.84 0.064 B 0.8828125
s = 1 0.8528 0.032 B 0.8828125
δ = 13/16 0.6448 0.512 BD 1.125
s = 3 1.1056 0.0512 BD 1.125
δ = 1 0.1056 0.0512 BE 0.125
δ = 1/16 0.6896 0.8192 BE1 1
v = 1 1 — BE1 —
δ = 1 0 — BE2 —
δ = 0 — — BE20 —

Table 2.3: Results of arithmetic encoding and decoding for Example 3, with renormalization
and a 16-symbol (hexadecimal) output alphabet. Final code value is v̂ = 0.BE2016 =
0.1011 1110 0010 00002 = 0.74267578125.



34 2.1. Coding with Fixed-Precision Arithmetic

Data
source

Decoded
data

Arithmetic
encoder

Arithmetic
encoder

Arithmetic
decoder

Arithmetic
decoder

- -

¾¾

?

Ω

p(Ω) = [p(0) p(1) · · · p(M − 1)]

p(Ω) = [p(0) p(1) · · · p(M − 1)]

p(D) = [1/D 1/D · · · 1/D]

p(D) = [1/D 1/D · · · 1/D]

M symbols

M symbols

binary

binary

D symbols

Figure 2.2: Configuration for using a standard (binary output) arithmetic encoder to
replace an encoder with D-symbol (ternary, decimal, etc.) output.

Algorithms 9 and 10 can also be used for values of D that are not powers of two, but
with inefficient radix-D arithmetic. The problem is that while the multiplications by the
interval length can be approximated, rescaling has to be exact. For example, if D = 2 then
multiplication by 2−P is computed exactly with bit-shifts, but exact multiplication by 3−P

requires special functions [39].
A better alternative is to use a small trick, shown in Figure 2.2. We can compress the

data sequence using a standard encoder/decoder with binary arithmetic. Next, we “decode”
the binary compressed data using a D-symbol alphabet with uniform probability distribution
p = [ 1/D 1/D · · · 1/D ]. The uniform distribution does not change the distribution of
the code values (and thus will not alter compression), but converts the data to the desired
alphabet. Since both processes implemented by the decoder are perfectly reversible, the
decoder only has to implement the inverse processes. This takes twice the time for encoding
and decoding, but is significantly faster than using radix-D arithmetic.

2.1.4 Care with Carries

We have seen in Section 2.1 that carry propagation is applied only to the set of outstanding
bits, which always start with a 0-bit, and is followed possibly by 1-bits. Examples of set of
outstanding bits are

∅, {0}, {0, 1}, {0, 1, 1}, {0, 1, 1, 1}, · · · , {0, 1, 1, 1, . . . , 1}.
Clearly, with such simple structure we do not have to save the outstanding bits to know

what they are. We can just keep a counter with the number of outstanding bits, which is
incremented as new bits are defined during renormalization. We can output (or “flush”) these
bits whenever a carry occurs or when a new outstanding 0-bit comes from renormalization.

Note that not all bits put out by rescaling have to be outstanding before becoming settled.
For example, if we have b < b + l ≤ 0.5, we not only know that the next bit is zero, but we
know that it cannot possibly be changed by a carry, and is thus settled. We can disregard
these details when implementing carry propagation in buffers, but not when using counters.
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With D-symbol output the set of outstanding symbols starts with a symbol σ 6= D − 1,
and is possibly followed by several occurrences of the symbol D − 1, as shown below.

∅, {σ}, {σ,D − 1}, {σ,D − 1, D − 1}, · · · , {σ,D − 1, D − 1, . . . , D − 1}.

In this case we can only keep the first symbol σ and a counter with the number of outstanding
symbols.

It is important to know that the number of outstanding symbols can grow indefinitely, i.e.,
we can create distributions and infinitely long data sequences such that bits never become
settled. The final code value selection (Algorithm 5) settles all outstanding symbols, so that
we can periodically restart the encoder to limit the number of outstanding symbols.

There are many choices for dealing with carry propagation. The most common are:

1. Save the outstanding symbols temporarily to a buffer, and then implement carry prop-
agation in the buffer. This simple technique is efficient when working with bytes
(D = 256), but can be inefficient when D is small. It can only be used if we know that
the buffer is large enough to fit all the compressed symbols, since all of them can be
outstanding.

2. Use a counter to keep track of the outstanding symbols, saving all symbols to a buffer
or file as soon as they become settled. There is chance of overflow depending on
the number of bits used by the counter (mantissas with 32, 53, and 64 bits allow,
respectively, 4 ·109, 9 ·1015, and 2 ·1019 outstanding symbols). In practical applications
a counter overflow is extremely improbable, specially with adaptive coders.

3. Use carry propagation in a buffer, plus “bit-stuffing” [15, 27] in the following form. Out-
standing bits are moved out from the buffer as soon as they become settled. Whenever
the number of 1-bits exceeds a threshold (e.g., 16), an artificial zero is added to the
compressed bit sequence, forcing the outstanding bits to become settled. The decoder
can identify when this happens by comparing the number of consecutive 1-bits read.
When it exceeds the threshold, the decoder interprets the next bit not as data, but as
carry information. If it is 1, then a carry is propagated in the decoder buffer, and the
decoding process continues normally. This technique is used by the Q-coder [27].

2.1.5 Alternative Renormalizations

We show in Section 1.6.4 that there is a great deal of flexibility in rescaling the intervals, and
we present in Section 2.1.1 an implementation based on a particular form of renormaliza-
tion. Other choices lead to renormalized intervals with distinct properties, which had been
exploited in several manners by different arithmetic coding implementations. Below we show
a few examples.

• We have chosen renormalization (2.6), which produces intervals such that b ∈ [0, 1),
l ∈ (1/D, 1], and b + l ∈ (1/D, 2). Its main advantage is that it simplifies carry
detection and renormalization, especially when D > 2. Note that it has a criterion for
when to renormalize that is based only on the interval length.
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• The decision of when to renormalize can be based on settled symbols. For example,
the method by Rubin [13] keeps intervals such that b ∈ [0, 1), and b + l ∈ (0, 1],
which are renormalized when the most significant symbol becomes settled, i.e., bDbc =
bD(b + l)c, meaning that the outstanding symbols are kept in the registers. To avoid
the interval length eventually collapsing to zero, the encoder and decoder rescale and
shift the interval when its length gets too small, forcing outstanding symbols to become
settled.

• Witten, Neal, and Cleary [25, 51] proposed an arithmetic coding implementation that
became quite popular. Instead of the base length, it uses the extremes points to
represent the interval, and keeps it renormalized in such a manner that b + l ∈ (0, 1].
Renormalization occurs whenever bits are settled, and also when 0.25 ≤ b < b + l ≤
0.75. Thus, it avoids the precision loss that occurs in [13], and uses counters to keep
track of the number of outstanding bits. This technique can be adapted to D-symbol
output, but it is not as simple as what we have in Appendix A.

• The binary Q-coder developed by IBM [27, 28], keeps intervals with l ∈ (0.75, 1.5].
This way we normally have l ≈ 1, and we can approximate multiplications with p·l ≈ p,
and (1− p) · l ≈ l − p. Variations include the QM [36] and MQ-coder [62].

2.2 Adaptive Coding

Since typical information sources tend to be quite complex, we must have a good model of
the data source to achieve optimal compression. There are many techniques for modeling
complex sources [14, 25, 29, 44, 45, 46, 49] that decompose the source data in different cat-
egories, under the assumption that in each category the source symbols are approximately
independent and identically distributed, and thus well suited to be compressed with arith-
metic coding. In general, we do not know the probabilities of the symbols in each category.
Adaptive coding is the estimation of the probabilities of the source symbols during the coding
process. In this section we study techniques to efficiently combine arithmetic coding with
dynamic probability estimation.

2.2.1 Strategies for Computing Symbol Distributions

The most efficient technique for computing distributions depends on the data type. When we
are dealing with completely unknown data we may want adaptation to work in a completely
automatic manner. In other cases, we can use some knowledge of the data properties to
reduce or eliminate the adaptation effort. Below we explain the features of some of the most
common strategies for estimating distributions.

• Use a constant distribution that is available before encoding and decoding, normally
estimated by gathering statistics in a large number of typical samples. This approach
can be used for sources such as English text, or weather data, but it rarely yields the
best results because few information sources are so simple as to be modeled by a single
distribution. Furthermore, there is very little flexibility (e.g., statistics for English text
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do not fit well Spanish text). On the other hand, it may work well if the source model
is very detailed, and in fact it is the only alternative in some very complex models in
which meaningful statistics can only be gathered from a very large amount of data.

• Use pre-defined distributions with adaptive parameter estimation. For instance, we
can assume that the data has Gaussian distribution, and estimate only the mean and
variance of each symbol. If we allow only a few values for the distribution parameters,
then the encoder and decoder can create several vectors with all the distribution values,
and use them according to their common parameter estimation. See ref. [49] for an
example.

• Use two-pass encoding. A first pass gathers the statistics of the source, and the second
pass codes the data with the collected statistics. For decoding, a scaled version of
vectors p or c must be included at the beginning of the compressed data. For example,
a book can be archived (compressed) together with its particular symbol statistics. It
is possible to reduce the computational overhead by sharing processes between passes.
For example, the first pass can simultaneously gather statistics and convert the data
to run-lengths.

• Use a distribution based on the occurrence of symbols previously coded, updating c
with each symbol encoded. We can start with a very approximate distribution (e.g.,
uniform), and if the probabilities change frequently, we can reset the estimates peri-
odically. This technique, explained in the next section, is quite effective and the most
convenient and versatile. However, the constant update of the cumulative distribution
can increase the computational complexity considerably. An alternative is to update
only the probability vector p after each encoded symbol, and update the cumulative
distribution c less frequently (Section 2.2.5).

2.2.2 Direct Update of Cumulative Distributions

After encoding/decoding k symbols the encoder/decoder can estimate the probability of a
symbol as

p(m) =
P̃ (m)

k + M
, m = 0, 1, 2, . . . , M − 1, (2.8)

where P̃ (m) > 0 is the number of times symbol m was encoded/decoded plus one (added
to avoid zero probabilities). The symbol occurrence counters are initialized with P̃ (m) = 1,
and incremented after a symbol is encoded. We define the cumulative sum of occurrences as

C̃(m) =
m−1∑

i=0

P̃ (i), m = 0, 1, 2, . . . , M, (2.9)

and the cumulative distribution as

c(m) =
C̃(m)

k + M
=

C̃(m)

C̃(M)
, m = 0, 1, 2, . . . , M (2.10)
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Algorithm 11
Procedure Interval Update (s, b, l,M, C̃)

1. set γ = l/C̃(M) ? Compute division result
2. if s = M − 1 ? Special case for last symbol

then set y ← b + l; ? end of interval
else set y ← b + γ · C̃(s + 1); ? base of next subinterval

3. set { b ← b + γ · C̃(s); ? Update interval base
l ← y − b; } ? Update interval length as difference

4. return.
•

Algorithm 12
Function Interval Selection (v, b, l,M, C̃)

1. set { s ← M − 1; ? Start search from last symbol
γ = l/C̃(M) ? Compute division result
x ← b + γ · C̃(M − 1); ? Base of search interval
y ← b + l; } ? End of search interval

2. while x > v do ? Sequential search for correct interval
2.1. set { s ← s− 1; ? Decrement symbol by one

y ← x; ? move interval end
x ← b + γ · C̃(s); } ? compute new interval base

3. set { b ← x; ? Update interval base
l ← y − b; } ? Update interval length as difference

4. return s.
•

Only a few changes to the algorithms of Section 2.1.1 are sufficient to include the ability
to dynamically update the cumulative distribution. First, we may use (2.10) to change all
multiplications by c(s), as follows.

b ← b +
l · C̃(s)

C̃(M)
(2.11)

Similarly, the changes to the integer arithmetic version in Appendix A may be in the form.

B ← B +

⌊
L · C̃(s)

C̃(M)

⌋
(2.12)

However, since divisions are much more expensive than additions and multiplications,
it is better to compute γ = l/C̃(M) once, and implement interval updating as shown in
Algorithm 11 [50, 51]. The corresponding changes to Algorithm 7 is shown in Algorithm 12.

In Algorithms 7 and 12 we may need to compute several multiplications, under the
assumption they are faster than a single division (see Algorithm 21 for a more efficient
search method). If this is not true, Algorithm 13 shows how to replace those multiplications
by one extra division.
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Algorithm 13
Function Interval Selection (v, b, l,M, C̃)

1. set { s ← M − 1; ? Initialize search from last symbol
γ = l/C̃(M) ? Compute division result
W ← (v − b)/γ; } ? Code value scaled by C̃(M)

2. while C̃(s) > W do ? Look for correct interval
2.1. set s ← s− 1; ? decrement symbol by one

3. set { b ← b + γ · C̃(s); ? Update interval base
l ← γ · [C̃(s + 1)− C̃(s)]; } ? Update interval length

4. return s.
•

Algorithm 14
Procedure Update Distribution (s,M, C̃)

1. for m = s + 1 to M do ? For all symbols larger than s
1.1 set C̃(s) ← C̃(s) + 1; ? increment cumulative distribution

2. return.
•

After the modifications above, Algorithms 1 and 6 are made adaptive by adding the
following line:

2.4. Update Distribution (sk,M, C̃);
The procedure to update the cumulative distribution is shown in Algorithm 14. Note

that in this algorithm it is necessary to compute up to M additions. Similarly, in Step 2 of
Algorithm 13 we have to perform up to M comparisons and subtractions. Since the number
of operations in both cases decreases with the symbol number, it is good to sort the symbol
by increasing probability. Reference [25] presents an implementation that simultaneously
updates the distribution while keeping it sorted.

2.2.3 Binary Arithmetic Coding

Binary arithmetic coders work only with a binary source alphabet (M = 2). This is an
important type of encoder because it helps to solve many of the complexity issues created
with the dynamic update of the cumulative distributions (Algorithm 14). When M = 2 the
cumulative distribution vector is simply c = [ 0 p(0) 1 ], which makes coding and updating
the cumulative distribution much simpler tasks.

However, it is important to observe that there is a performance trade-off here. While
binary arithmetic coding greatly simplifies coding each binary data symbol, its final through-
put of information (actual information bits) cannot be larger than one bit per coded symbol,
which normally means one bit per few CPU clock cycles [63]. Consequently, they are not as
attractive for fast coding as they used to be, but there is no reason not to use their special
properties when coding binary sources.

Algorithms 15, 16, and 17, have the procedures for, respectively, binary encoding (inter-
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Algorithm 15
Procedure Binary Interval Update (s, b, l, C̃(1), C̃(2))

1. set x ← l · C̃(1)/C̃(2); ? Point for interval division
2. if s = 0 ? If symbol is zero

then set l ← x; ? Update interval length,
else set { b ← b + x; ? move interval base and

l ← l − x; } ? update interval length
3. return.

•

Algorithm 16
Function Binary Interval Selection (v, b, l, C̃(1), C̃(2))

1. set x ← l · C̃(1)/C̃(2); ? Point for interval division
2. if b + x > v ? Look for correct interval

then set { s ← 0; ? Symbol is 0: no change to interval base
l ← x; } ? update interval length

else set { s ← 1; ? Symbol is 1:
b ← b + x; ? move interval base and
l ← l − x; } ? update interval length

3. return s.
•

val update), decoding (interval selection and update), and distribution update. Note that
instead of using the full vector C̃ we use only C̃(1) = P̃ (0) and C̃(2) = P̃ (0) + P̃ (1). The
renormalization procedures do not have to be changed for binary arithmetic coding.

Example 11

/ Binary arithmetic coding has universal application because, just as any number can
be represented using bits, data symbols from any alphabet can be coded as a sequence
of binary symbols. Figure 2.3 shows how the process of coding data from a 6-symbol
source can be decomposed in a series of binary decisions, which can be represented as
a binary search tree [30]. The leaf nodes correspond to the date source symbols, and
intermediate nodes correspond to the decisions shown below them.

Underlined numbers are used for the intermediate nodes, and their value corre-
sponds to the number used for the comparison (they are the “keys” for the binary
search tree [30]). For instance, node m corresponds to test “s < m?” Symbols are
coded starting from the root of the tree, and continue until a leaf node is encountered.
For example, if we want to code the symbol s = 2, we start coding the information
“s < 3?” indicated by node 3; next we go to node 1, and code the information
“s < 1?”, and finally move to node 2 to code “s < 2?”. At each node the information
is coded with a different set of probabilities, which in Figure 2.3 are shown below
the tree nodes. These probabilities, based on the number of symbol occurrences, are
updated with Algorithm 17. An alphabet with M symbols needs M − 1 probability
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Algorithm 17
Procedure Update Binary Distribution (s, C̃)

1. if s = 0 then set C̃(1) ← C̃(1) + 1; ? If s = 0 then increment 0-symbol counter
2. set C̃(2) ← C̃(2) + 1; ? Increment symbol counter
3. return.

•

estimates for the intermediate nodes. The decoder follows the same order, using the
same set of probabilities. (Note that this is equivalent to using the scheme explained
in Section 1.6.3, and shown in Figure 1.5.)

There is no loss in compression in such scheme. For example, when coding symbol
s = 2 we can compute the symbol probability as a product of conditional probabili-
ties [22].

Prob(s = 2) = Prob(s < 3) · Prob(s = 2|s < 3)

= Prob(s < 3) · Prob(s ≥ 1|s < 3) · Prob(s = 2|1 ≤ s < 3) (2.13)

= Prob(s < 3) · Prob(s ≥ 1|s < 3) · Prob(s ≥ 2|s ≥ 1, s < 3)

This means that

log2 [Prob(s = 2)] = log2 [Prob(s < 3)] + log2 [Prob(s ≥ 1|s < 3)] + (2.14)

+ log2 [Prob(s ≥ 2|1 ≤ s < 3)]

The left-hand-side of (2.14) is the number of bits required to code symbol s = 2
directly with a 6-symbol model, which is equal to the sum of the bits used to code
the same symbol by successively coding the binary symbols in the binary-search tree
(see Figure 2.3). We do not have to worry about computing explicit values for the
conditional probabilities because, when we use a different adaptive binary model for
each node, we automatically get the estimate of the proper conditional probabilities.
This property is valid for binary-tree decompositions of any data alphabet. .

A binary-search tree as in Figure 2.3 can be automatically generated using, for example,
the bisection algorithm [17, 19, 39]. Algorithms 18 and 19 show such implementations for
encoding, decoding, and overall probability estimation updates. Note that they use the
binary coding and decoding functions of Algorithms 15 and 16, and use only one vector, C̄,
with dimension M−1, to store the tree-branch occurrence counters. Each component C̄(m),
0 < m < M , contains the number of the number of times we had “s < m?” on tree node
m, and C̄(0) contains the total number of symbols coded. This vector is initialized with the
number of leaf nodes reachable from the left branch of the corresponding node.

The binary conditional probabilities estimates are computed during the encoding and
decoding directly from C̄. For example, in the example of Figure 2.3 we have

C̄ = [ 121 4 8 22 15 19 ].
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Figure 2.3: Example of a binary search tree with the sequential decisions required for
coding data from a 6-symbol alphabet using binary encoders. Leaf nodes represent data
symbols, and the numbers above them represent their number of occurrences, P̃ (s). The
binary information indicated by each question mark is coded with the probability estimate
shown in parenthesis.

In order to code the decision at node 3 we use probability estimate 22/121, which is defined
by counters C̄(0) = 121 and C̄(3) = 22. If we move to node 1 then the next probability
estimate is C̄(1)/C̄(3) = 4/22. On the other hand, if we move node 4 we need to use
probability estimate C̄(4)/[C̄(0) − C̄(3)] = 15/99, which is also readily computed from
components of C̄. See Algorithms 18 and 19 for details.

Since we use bisection search in Algorithms 18 and 19, the number of times the binary
encoding and decoding functions are called is between blog2 Mc and dlog2 Me, for all data
symbols. Thus, by using binary-tree searches and binary arithmetic coding we greatly reduce
the worst-case complexity required to update probability estimates.

Example 12

/ Figure 2.4 shows a second example of a binary-search tree that can be used to code
the 6-symbol data of Example 10. Different search algorithms can be used to create
different trees. For example, we could have used a sequential search, composed of
tests, “s < 5?”, “s < 4?”, “s < 3?”, . . . , “s < 1?”

The trees created from bisection search minimize the maximum number of binary
symbols to be coded, but not the average. The tree of Figure 2.4 was designed so that
the most frequent symbols are reached with the smallest number of tests. Table 2.4
shows the average number of symbols required for coding symbols from the source of
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Algorithm 18
Procedure Interval Update (s, b, l,M, C̄)

1. set { u ← 0; n ← M ; ? Initialize bisection search limits
k ← C̄(0); ? First divisor = symbol counter
C̄(0) ← C̄(0) + 1; } ? Increment symbol counter

2. while n− u > 1 do ? Bisection search loop
2.1. set m ← b(u + n)/2c; ? Compute middle point
2.2. if s < m ? If symbol is smaller than middle

then set { n ← m; ? then update upper limit
Binary Interval Update (0, b, l, C̄(m), k); ? code symbol 0
k ← C̄(m); ? set next divisor
C̄(m) ← C̄(m) + 1; } ? increment 0-symbol counter

else set { u ← m; ? else update lower limit
Binary Interval Update (1, b, l, C̄(m), k); ? code symbol 1
k ← k − C̄(m); } ? set next divisor

3. return.
•

Algorithm 19
Function Interval Selection (v, b, l,M, C̄)

1. set { s ← 0; n ← M ; ? Initialize bisection search bounds
k ← C̄(0); ? First divisor = symbol counter
C̄(0) ← C̄(0) + 1; } ? Increment symbol counter

2. while n− s > 1 do ? Bisection search loop
2.1. set m ← b(s + n)/2c; ? Compute middle point
2.2. if Binary Interval Selection (v, b, l, C̄(m), k) = 0 ? If symbol is smaller than middle

then set { n ← m; ? then update upper limit
k ← C̄(m); ? set next divisor
C̄(m) ← C̄(m) + 1; } ? increment 0-symbol counter

else set { s ← m; ? else update lower limit
k ← k − C̄(m); } ? set next divisor

3. return s.
•
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Figure 2.4: Another example of a binary-search tree with for coding data from a 6-symbol
source. The number of symbol occurrences is the same as shown in Figure 2.3. This tree
has been designed to minimize the average number of binary symbols coded.

Example 11 (considering probability estimates as the actual probabilities), for different
trees created from different search methods.

Because we have the symbols sorted by increasing probability, the performance of
the tree defined by sequential search, starting from the most probable symbol, is quite
good. The tree of Figure 2.4 is the one that minimizes the average number of coded
binary symbols. Below we explain how it is designed. .

Prefix coding [4, 5, 21, 32, 55, 56] is the process of coding information using decision
trees as defined above. The coding process we have shown above is identical, except that
we call a binary arithmetic encoding/decoding function at each node. Thus, we can use
all the known facts about prefix coding to analyze the computational complexity of binary
arithmetic encoding/decoding, if we measure complexity by the number of coded binary
symbols.

Since the optimal trees for prefix coding are created using the Huffman algorithm [2],
these trees are also optimal for binary arithmetic encoding/decoding [23]. Strictly speaking,
if the data symbols are not sorted according to their probability, the optimal Huffman tree
does not satisfy the requirements for binary-search trees, i.e., “keys” are not properly sorted,
and we cannot define a node with a simple comparison of the type “s < m?” This problem
is solved by storing the paths from the root node to leaf nodes, i.e., the Huffman codewords.
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Data Probability Number of binary symbols coded
Symbol estimate Sequential search Bisection search Optimal search

s p(s) N(s) p(s)N(s) N(s) p(s)N(s) N(s) p(s)N(s)
0 0.033 6 0.198 2 0.066 4 0.132
1 0.066 5 0.331 3 0.198 4 0.264
2 0.083 4 0.331 3 0.248 3 0.248
3 0.124 3 0.372 2 0.248 3 0.372
4 0.157 2 0.314 3 0.471 3 0.471
5 0.537 1 0.537 3 1.612 1 0.537

Sum 1.000 21 2.083 16 2.843 18 2.025

Table 2.4: Number binary symbols coded using trees created from different types of binary
searches, applied to data source of Example 10. The trees corresponding to bisection and
optimal searches are shown in Figures 2.3 and 2.4, respectively.

2.2.4 Tree-based Update of Cumulative Distributions

In this section, we show that we can use binary-search trees (Section 2.2.3) to efficiently
combine computing the cumulative distribution, updating it, encoding and decoding, without
having to use a binary arithmetic encoder. We present techniques similar to the methods
proposed by Moffat [31] and Fenwick [42]. We start with an example of how to compute
the cumulative distribution vector C̃ from the statistics C̄ gathered while using the binary
search trees.

Example 13

/ Let us consider the binary search tree shown in Figure 2.3. Let us assume that we
had been using Algorithms 18 and 19 to compute the number of symbols occurrences
in the tree, C̄, and we want to compute the cumulative distribution C̃ from C̄ =
[ 121 4 8 22 15 19 ].

From the tree structure we can find out that, except for the root node, the counter
at each node has the number of occurrences of all symbols found following the left
branch, i.e.,

C̄(0) ≡ P̃ (0) + P̃ (1) + P̃ (2) + P̃ (3) + P̃ (4) + P̃ (5) = 121

C̄(1) = P̃ (0) = 4

C̄(2) = P̃ (1) = 8

C̄(3) = P̃ (0) + P̃ (1) + P̃ (2) = 22

C̄(4) = P̃ (3) = 15

C̄(5) = P̃ (4) = 19

where P̃ (s) is the number of time symbol s has occurred. From these equations we
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can compute the vector with cumulative distributions as

C̃(0) ≡ 0

C̃(1) = P̃ (0) = C̄(1) = 4

C̃(2) = P̃ (0) + P̃ (1) = C̄(1) + C̄(2) = 12

C̃(3) = P̃ (0) + P̃ (1) + P̃ (2) = C̄(3) = 22

C̃(4) = P̃ (0) + P̃ (1) + P̃ (2) + P̃ (3) = C̄(3) + C̄(4) = 37

C̃(5) = P̃ (0) + P̃ (1) + P̃ (2) + P̃ (3) + P̃ (4) = C̄(3) + C̄(4) + C̄(5) = 56

C̃(6) = P̃ (0) + P̃ (1) + P̃ (2) + P̃ (3) + P̃ (4) + P̃ (5) = C̄(0) = 121

We can do the same with the tree of Figure 2.4, and find different sets of equations.
In this case the counters are

C̄(0) ≡ P̃ (0) + P̃ (1) + P̃ (2) + P̃ (3) + P̃ (4) + P̃ (5) = 121

C̄(1) = P̃ (0) = 4

C̄(2) = P̃ (0) + P̃ (1) = 12

C̄(3) = P̃ (0) + P̃ (1) + P̃ (2) = 22

C̄(4) = P̃ (3) = 15

C̄(5) = P̃ (0) + P̃ (1) + P̃ (2) + P̃ (3) + P̃ (4) = 56

and their relationship with the cumulative distribution is given by

C̃(0) ≡ 0

C̃(1) = P̃ (0) = C̄(1) = 4

C̃(2) = P̃ (0) + P̃ (1) = C̄(2) = 12

C̃(3) = P̃ (0) + P̃ (1) + P̃ (2) = C̄(3) = 22

C̃(4) = P̃ (0) + P̃ (1) + P̃ (2) + P̃ (3) = C̄(3) + C̄(4) = 37

C̃(5) = P̃ (0) + P̃ (1) + P̃ (2) + P̃ (3) + P̃ (4) = C̄(5) = 56

C̃(6) = P̃ (0) + P̃ (1) + P̃ (2) + P̃ (3) + P̃ (4) + P̃ (5) = C̄(0) = 121

.

The equations that we obtain from any decision tree are linearly independent, and thus
it is always possible to compute the cumulative distribution C̃ from the counters C̄. We
show next how to use the tree structure to efficiently compute the components of C̃ required
for encoding symbol s, C̃(s) and C̃(s + 1).

In order to compute C̃(s), when we move from the root of the tree, up to the leaf
representing symbol s, we simply add the value of C̄(n) for each node n that does not have
its condition satisfied (i.e., we move up its right-side branch). For example, to compute C̃(2)
using the tree of Figure 2.3, we start from node 3, and move left to node 1, right to node
2, and right to leaf 2. Since we move along the right branch of nodes 1 and 2, we conclude
that C̃(2) = C̄(1) + C̄(2) = 12.

The value of C̃(s + 1) can be computed together with C̃(s): we just have to add the
running sum for C̃(s) and C̄(n) at the last left-side branch taken before reaching leaf s. For
example, when computing C̃(2), the last left-side branch is taken at root node 3, and thus
C̃(3) is equal to the running sum (zero) plus C̄(3) = 22.
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Algorithm 20
Procedure Interval Update (s, b, l,M, C̄)

1. set { u ← 0; n ← M ; ? Initialize bisection search limits
E ← 0; F ← C̄(0); ? Initialize cumulative sum bounds
γ ← l/C̄(0); } ? Compute result of division

2. while n− u > 1 do ? Bisection search loop
2.1. set m ← b(u + n)/2c; ? Compute middle point
2.2. if s < m ? If symbol is smaller than middle

then set { n ← m; ? then update bisection upper limit
F ← E + C̄(m); ? set upper bound on cum. sum
C̄(m) ← C̄(m) + 1; } ? Increment node occurrence counter

else set { u ← m; ? else update bisection lower limit
E ← E + C̄(m); } ? increment lower bound on cum. sum

3. if s = M − 1 ? Set interval end according to symbol
then set y ← b + l; ? Exact multiplication
else set y ← b + γ · F ; ? Base of next subinterval

4. set { b ← b + γ · E; ? Update interval base
l ← y − b; ? Update interval length as difference
C̄(0) ← C̄(0) + 1; } ? Increment symbol counter

5. return.
•

Algorithms 20 and 21 show how to combine all the techniques above to simultaneously
compute and update the cumulative distribution, and use the computed values for encoding
and decoding. They use a tree defined by bisection search, but it is easy to modify them to
other tree structures. After Step 2 of Algorithm 20 we have E = C̃(s) and F = C̃(s + 1)
computed and updated with a number of additions proportional to log2(M).

2.2.5 Periodic Updates of the Cumulative Distribution

We have seen in Section 2.2.2 that adaptive coding can increase the arithmetic coding com-
putational complexity significantly, because of the effort to update the cumulative distribu-
tions. In Sections 2.2.3 and 2.2.4 we present tree-based updating techniques that reduce this
complexity very significantly. However, adaptation can still be a substantial fraction of the
overall coding computational complexity, and it happens that there is not much we can do
if we insist on the assumption that the probability model has to be updated immediately
after each encoded/decoded symbol, i.e., estimates are in the form given by (2.10), with a
division by the factor C̃(M).

However, with accurate and fast source modeling we can avoid having probabilities chang-
ing so quickly that we need to refresh estimates on a symbol-by-symbol basis. For example,
an image encoder may use different probabilities depending on a classification of the part
being encoded, which can be something like “constant,” “smooth,” “edge,” “high-frequency
pattern,” etc. With these techniques, we can assume that the source state may change
quickly, but the source properties (symbol probabilities) for each state change slowly.
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Algorithm 21
Function Interval Selection (v, b, l,M, C̄)

1. set { s ← 0; n ← M ; ? Initialize bisection search symbol limits
x ← b; y ← b + l; ? Set search interval bounds
E ← 0; ? Initialize cumulative sum
γ ← l/C̄(0); } ? Compute result of division

2. while n− s > 1 do ? Bisection search loop
2.1. set { m ← b(s + n)/2c; ? Compute middle point

z ← b + γ · [E + C̄(m)]; } ? Value at middle point
2.2. if z > v ? If symbol is smaller than middle

then set { n ← m; ? then update bisection upper limit
y ← z; ? new interval end
C̄(m) ← C̄(m) + 1; } ? increment node occurrence counter

else set { s ← m; ? else update bisection lower limit
x ← z; ? new interval base
E ← E + C̄(m); } ? increment lower bound on cum. sum

3. set { b ← x; ? Update interval base
l ← y − x; ? Update interval length as difference
C̄(0) ← C̄(0) + 1; } ? Increment symbol counter

4. return s.
•

Under these assumptions, and unless the number of data symbols is very large (thousands
or millions [51]), a significantly more efficient form of adaptive arithmetic coding updates
only the vector with symbol occurrence counters (P̃) after each symbol, and updates the
distribution estimate (c) periodically, or following some special events. For example, the
Q-coder updates its probability estimation only during renormalization [27]. For periodic
updates, we define R as number of symbol coded between updates of c. Typically, the period
R is a small multiple of M (e.g., R = 4M), but to improve the accuracy while minimizing
the computations, we can start with frequent updates, and then decrease their frequency.

One immediate consequence of this approach is that while coding we can use the simpler
procedures of Section 2.1.1 and Appendix A, and can completely avoid the divisions in
equations (2.10) to (2.12). Furthermore, if the period R is large enough, then it is feasible
to do many complex tasks while updating c, in order to increase the encoding/decoding
speed. For instance, in Section 2.3.2 we explain how to make decoding faster by sorting
the symbols according to their probability, finding the optimal decoding sequence (Huffman
tree), or computing the data for fast table look-up decoding.

2.3 Complexity Analysis

Large computational complexity had always been a barrier to the adoption of arithmetic
coding. In fact, for many years after arithmetic coding was invented, it was considered little
more than a mathematical curiosity because the additions made it slow, multiplications
made it very expensive, and divisions made it impractical. In this section, we analyze the
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complexity of arithmetic coding and explain how the technological advances that gives us
fast arithmetic operations change the complexity analysis.

Many of the conclusions in this section are based on experimental tests designed for
analyzing the arithmetic coding complexity, which are described in reference [63]. Another
earlier experimental evaluation of complexity is in reference [43].

We have to observe that the relative computational complexity of different coding op-
erations changed dramatically. Arithmetic operations today are much more efficient, and
not only due the great increase in the CPU clock frequency. In the past, the ratio be-
tween clock cycles used by some simple operations (comparisons, bit shifts, table look-up)
and arithmetic operations (specially division) was quite large. Today, this ratio is much
smaller [58, 59, 60, 61], invalidating previous assumptions for complexity reduction. For in-
stance, a set of comparisons, bit shifts, and table look-up now takes significantly more time
than a multiplication.

The speed of arithmetic coding needs to be measured by the rate of data (true infor-
mation) bits coming out of the encoder, or into the decoder (information throughput). For
example, binary coders can be very simple and fast, but their throughput is limited to a frac-
tion of bits per CPU clock cycle. Arithmetic coders with larger alphabets, on the other hand,
process information in a significantly more efficient manner, and can easily yield throughputs
of many bits per CPU clock cycle [63].

In this section we use the “big-O” notation of [30], where O(·) indicates asymptotic upper
bounds on the computational complexity.

The main factors that influence complexity are

• Interval renormalization and compressed data input and output.

• Symbol search.

• Statistics estimation (adaptive models only).

• Arithmetic operations.

In the next sections we analyze each of these in some detail. However, we will not consider
special hardware implementations (ASICs) for three reasons: (a) it is definitely outside the
scope of this text; (b) our model also applies to some specialized hardware, like DSP chips;
(c) many optimization techniques for general CPUs also apply to efficient hardware.

2.3.1 Interval Renormalization and Compressed Data Input and
Output

In integer arithmetic implementations the interval renormalization can be calculated with
only bit shifts. However, when D = 2, renormalization occurs quite frequently, consuming
many clock cycles. Using larger output alphabets in the form D = 2r reduces the frequency
of the renormalization by a factor of r (see Example 10), and thus may reduce the number of
clock cycles used for renormalization very significantly. Floating-point implementations may
need multiplication during renormalization, but if D is large enough then these operations
do not add much to the overall complexity.
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Data input and output, which occurs during renormalization, also has significant impact
on the encoding and decoding speed. Since computers and communication systems work
with groups of 8 bits (bytes), processing one bit at a time requires extra clock cycles to
properly align the data. Thus, there is substantial speedup when renormalization produces
bits that can be easily aligned in bytes (e.g., D = 24, D = 28, or D = 216). The case D = 256
has been shown to be particularly efficient [52, 54].

2.3.2 Symbol Search

The computational complexity of the arithmetic decoder may be many times larger than the
encoder’s because the decoder needs to find out in which subinterval the current code value
is, i.e., solve

ŝ(v) = { s : c(s)l ≤ v − b < c(s + 1)l} , (2.15)

or

ŝ(v) =

{
s : c(s) ≤ v − b

l
< c(s + 1)

}
. (2.16)

Mathematically these are equivalent, but we use (2.16) to represent the case in which the
division (v − b)/l is computed first (e.g., Algorithm 13).

This is a line-search problem [17, 30], where we need to minimize both the number of
points tested and the computations used for determining these points. The possible difference
in complexity between the encoder and decoder grows with the number of data symbols, M .
We can see from Algorithms 15 and 16 that when M = 2, the complexity is practically the
same for the encoder and decoder.

There are five main schemes for symbol search that are described next.

(a) Sequential search on sorted symbols
This search method, used in Algorithms 7 and 12, in the worst-case searches M −1 intervals
to find the decoded symbol. We can try to improve the average performance by sorting the
symbols according to their probability. Assuming that the symbols are sorted with increasing
probability, the average number of tests is

N̄s(Ω) =
M−1∑

m=0

p(m)(M −m) = M −
M−1∑

m=0

mp(m) = M − s̄(Ω) ≤ M, (2.17)

where s̄(Ω) is the average symbol number (after sorting) put out by data source Ω. Thus,
sequential search can be efficient only if the symbol distribution is very skewed (s̄(Ω) ≈
M − 1).

(b) Bisection search
With this type of search, shown in Algorithms 19, 21 and 28, the number of tests is bounded
by

blog2(M)c ≤ N̄b(Ω) ≤ dlog2(M)e , (2.18)

independently of the probabilities of the data symbols. Note that the encoder may also have
to implement the bisection search when it is used with binary coding (Section 2.2.3), or when
using trees for updating the probability estimates (Section 2.2.4).
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(c) Optimal tree-based search
We show in Section 2.2.4 how the process of encoding and decoding data from a M -symbol
alphabet can be decomposed in a set of binary decisions, and in Example 12 we show
its similarities to prefix coding, and an optimal decision tree designed with the Huffman
algorithm. The interval search process during decoding is also defined by binary decisions,
and the optimal set of decisions is also computed with the Huffman algorithm [2, 23]. Thus,
we can conclude that the average number of tests in such scheme is bounded as the average
number of bits used to code the source with Huffman coding, which is given by [9]

max{1, H(Ω)} ≤ N̄o(Ω) ≤ H(Ω) + 0.086 + max
m=0,1,...,M−1

{p(m)}. (2.19)

Implementing the optimal binary-search tree requires some extra storage, corresponding
to the data normally used for representing a Huffman code, and it is necessary to reorder
the symbols according to probability (as in the example of Figure 2.4), or use a modified
definition of the cumulative distribution.

With adaptive coding we have the problem that the optimal tree is defined from the
symbol probabilities, which are unknown when encoding and decoding start. This problem
can be solved by periodically redesigning the tree, together with the distribution updates
(Section 2.2.5).

(d) Bisection search on sorted symbols
We can combine the simplicity of bisection with a technique that takes into account the
symbol probabilities. When the data symbols are sorted with increasing probability, we can
look for the symbol m such that c(m) ≈ 0.5, and use it as the first symbol (instead of middle
point) to divide the interval during bisection. If the distribution is nearly uniform, then
this symbol should be near the middle and the performance is similar to standard bisection
search. On the other hand, if the distribution is highly skewed, them m ≈ M − 1, meaning
that the most probable symbols are tested first, reducing the average number of tests.

We can extend this technique to find also find the symbols with c(m) near 0.25 and
0.75, and then 0.125, 0.375, 0.625, and 0.825, and so on. Figure 2.5 shows an example of a
cumulative distribution, and the process of finding the symbols for initializing the bisection
search. The corresponding first levels of the binary-search tree are shown in Figure 2.6. The
decoder does not have to use all levels of that tree; it can use only the first level (and store
one symbol), or only the first two levels (and store three symbols), or any desired number
of levels. In Figure 2.6, the complete binary-search tree is defined by applying standard
bisection search following the tests shown in the figure. If the encoder uses up to V > 1
levels of the binary-search tree defined by the cumulative distribution, the average number
of tests is near the optimal (2.19), and the worst case is not much larger than (2.18).

(e) Bisection search starting from table look-up
The interval search methods that use (2.16) require one division, but its advantage is that it
is equivalent to rescaling the current interval to unit length before search. This means that
from a quantized version of the fraction (v − b)/l, like

E(v, b, l) =

⌊
Kt(v − b)

l

⌋
, (2.20)
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of Figure 2.5.
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E(v, b, l) (v − b)/l ŝmin(E) ŝmax(E)

0 [0.000, 0.125) 0 0
1 [0.125, 0.250) 0 1
2 [0.250, 0.375) 1 1
3 [0.375, 0.500) 1 1
4 [0.500, 0.625) 1 1
5 [0.625, 0.750) 1 2
6 [0.750, 0.875) 2 2
7 [0.875, 1.000) 2 3

Table 2.5: Values of (v − b)/l quantized to 8 integer values to allow fast decoding using
table look-up. The minimum and maximum possible values of the decoded symbol (table
entries) were computed using c = [ 0 0.2 0.7 0.9 1 ].

we can know better initial values for the bisection search, which can be stored in tables with
Kt elements, enabling significantly faster decoding.

The table entries are

ŝmin(E) =
{

s : c(s) ≤ E

Kt

< c(s + 1)
}

, (2.21)

ŝmax(E) =
{

s : c(s) <
E + 1

Kt

≤ c(s + 1)
}

. (2.22)

Note that ŝmax(E) <= ŝmin(E + 1), so one table is enough for correct decoding.

Example 14

/ Let us consider again the source of Example 3, with c = [ 0 0.2 0.7 0.9 1 ]. Table 2.5
shows how each value of E(v, b, l) corresponds to an interval of possible values of
(v − b)/l. By analyzing c and these intervals we can identify the range of possible
decoded symbols, which correspond to ŝmin(E) and ŝmax(E). For example, if while
decoding we have E(v, b, l) = 0, then we know that (v−b)/l < 0.125, and consequently
ŝ(v) = 0. On the other hand, if E(v, b, l) = 5, then 0.625 ≤ (v − b)/l < 0.75, which
means that we can only say that 1 ≤ ŝ(v) ≤ 2, and one more test is necessary for
finishing decoding. .

Note that, while the number of tests required by the original bisection search does not
depend on the probabilities, when we use ŝmin(E) and ŝmax(E) to initialize the search the
initial interval depends on the probabilities, and the most probable symbols are found with a
smaller number of tests. For instance, we can see in Table 2.5 that most of the table entries
correspond to the most probable symbols.

The main constraint for table look-up decoding is that it is practical only for static or
periodically updated models (Section 2.2.5). The overhead of computing the table each time
the model is updated can be small because table look-up is only for initializing the bisection
search, and even small tables (e.g., 16 entries) can make it significantly more efficient.
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2.3.3 Cumulative Distribution Estimation

Adaptive arithmetic coding requires an extra effort to update the cumulative distribution
estimates after coding each symbol, or in a periodical manner. Section 2.2 covers all the
important aspects of how adaptive encoders efficiently update the cumulative distributions c.
We analyze two main strategies, depending on whether the cumulative distribution updating
is done together or independently of the symbol search (Section 2.3.2).

(a) Combined updating, coding and decoding
In this case, the most efficient implementations use binary-search trees, and updating is
applied to vector C̄, instead of C̃. Binary coding (Section 2.2.3) and tree-based updating
(Section 2.2.4) have the same asymptotic complexity, depending on the tree being used. In
addition, by comparing Algorithms 18 and 19 and Algorithms 20 and 21, we can see that
the encoder and the decoder have very similar computational complexity.

The worst-case effort is minimized when we use bisection search, resulting in a number of
operations per coded symbol proportional to log2(M) (equation (2.18)). Huffman trees, that
optimize the average performance, require an average number of operations proportional to
N̄o(Ω), defined in equation (2.19).

(b) Independent updating
When source Ω has low entropy, some symbols should occur much more frequently, and it
may be efficient to update C̃ directly, if the symbols are sorted by increasing probabilities.
Implementations by Witten et al. [25, 51] use this strategy. However, when all symbols are
equally probable, the effort for sorting and updating C̃ is on average proportional to M/2,
and in the worst-case proportional to M − 1.

As explained in Section 2.2.5, with periodic updates of C̃ we can recompute and sort sym-
bols with reasonable worst-case complexity. We assume that the updating period is R coded
symbols. One choice is keep the data symbols not sorted, and to update C̃ using (2.10),
which requires O(M) operations per update, and an average complexity of O(M/R) oper-
ations per coded symbol. Decoding can use bisection for symbol search. If we choose, for
example, R = M then we have O(1) operations per update, which is quite reasonable.

Sorting the symbols according to their probability during each update can be done with
O(M log(M)/R) operations per symbol, in the worst-case [30]. Since symbols are normally
already sorted from previous updating passes, insertion sort [30] typically can be done with an
average of O(M/R) operations. When the symbols are sorted, we can use the more efficient
symbol search of Section 2.3.2(d). Choosing R = M results in O(log(M)) operations per
symbol.

With periodic updating we can both sort symbols, and find the optimal search strategy
(Huffman tree), with a reasonable complexity of O(M log(M)/R) operations per symbol [30].
However, even though the asymptotic complexity of finding the Huffman code is the same
as simply sorting, it requires considerable more effort.

Table 2.6 presents a summary of the results above. Note that for the complexity analysis
of optimal searches, we can use O(H(Ω) + 1), instead of the more complex and tighter
bounds given by (2.19). The last columns in Table 2.6 indicates the need to use divisions in
the form (2.10). Changing the cumulative distribution every symbol requires using different
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Searching & updating Symbol Decoder Distribution Divisions
methods encoding interval search updating

Fixed code O(1) O(H(Ω) + 1) NA NA
optimal search
Sequential search O(1) O(M) O(M) O(1)
on sorted symbols
Combined updating and O(log(M)) O(1)
coding, bisection tree
Combined updating and O(H(Ω) + 1) O(1)
coding, optimal tree
Periodic update, O(1) O(log(M)) O(M/R) O(1/R)
bisection search
Periodic update, O(1) O(H(Ω) + 1) O(M log(M)/R) O(1/R)
optimal search

Table 2.6: Computational complexity of symbol search and adaptation (cumulative distri-
bution updating) for fixed and different adaptive arithmetic coding techniques. Typically,
R = 4M minimizes the complexity without degrading performance.

divisors for each coded symbol. Periodic updating, on the other hand, allows us to compute
the inverse of divisor once, and use it for coding several (R) symbols.

2.3.4 Arithmetic Operations

Presently, additions and multiplications are not much slower than other operations, such
as bit shifts and comparison. Divisions, on the other hand, have a much longer latency
(number of clock cycles required to perform the operation), and cannot be streamlined with
other operations (like special circuitry for multiply-add) [58, 59, 60, 61].

First, let us consider the arithmetic required by fixed coders, and adaptive coders with
periodic updating. The arithmetic coding recursion in the forms (1.9) and (1.40) require
two multiplications and, respectively, one and three additions. Thus, except for processor
with very slow multiplication, encoding requirements are quite reasonable. Decoding is
more complex due to the effort to find the correct decoding interval. If we use (1.16) for
interval search, we have one extra division, plus several comparisons (Section 2.3.2). The
multiplication-only version (1.38) requires several multiplications and comparisons, but with
reasonably efficient symbol search this is faster than (1.16), and eliminates the need to define
division when multiplications are approximated.

Adaptive coding can be considerably slower because of the divisions in (2.11) and (2.12).
They can add up to two divisions per interval updating. In Algorithms 11, 12 and 13, we
show how to avoid one of the divisions. Furthermore, updating the cumulative distribution
may require a significant number of additions. Note that having only periodic updates of
the cumulative distribution significantly reduces this adaptation overhead, because all these
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divisions and additions are not required for every coded symbol. For example, a single
division, for the computation of 1/C̃(M), plus a number of multiplications and additions
proportional to M , may be needed per update. If the update occurs every M coded symbols,
then the average number of divisions per coded symbol is proportional to 1/M , and the
average number of multiplications and additions are constants.

2.4 Further Reading

We presented the coding method that is now commonly associated with the name arithmetic
coding, but the reader should be aware that other types of arithmetic coding had been
proposed [6, 7]. Standard implementations of arithmetic coding had been defined in some
international standards [33, 36, 38, 62]. Several techniques for arithmetic coding complexity
reduction not covered here are in the references [11, 18, 23, 25, 27, 28, 34, 37, 42, 51,
52]. We did not mention the fact that errors in arithmetic coded streams commonly lead
to catastrophic error propagation, and thus error-resilient arithmetic coding [57] is very
important in some applications.
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Integer Arithmetic Implementation

The following algorithms show the required adaptations in the algorithms in Section 2.1.1
for use with integer arithmetic, and with a D-symbol output alphabet. Typically D is small
power of two, like 2, 4, 16, or 256. As explained in Section 2.1.2, we assume that all numbers
are represented as integers, but here we define B = DP b, L = DP l, and C(s) = DP c(s).
In addition, we assume multiplications computed with 2P digits and results truncated to P
digits. Renormalization (2.6) sets L > DP−1, and thus the minimum probability allowed is
defined by ⌊

[C(s + 1)− C(s)] D−P L
⌋
≥ 1 ⇒ C(s + 1)− C(s) ≥ D, (A.1)

i.e., p(s) ≥ D1−P .

Algorithm 22, for integer arithmetic, is almost identical to Algorithm 1, except for the ini-
tialization of L, and the decision for renormalization. The arithmetic operations that update
the interval base may overflow the integer registers. To make clear that this is acceptable,
we define the results modulo DP , as in Algorithm 23. The results of the multiplications
are multiplied by D−P and truncated, meaning that the least significant bits are discarded.
Overflow is here detected by a reduction in the base value. For that reason, we implement
carry propagation together with the interval update in Algorithm 23.

Note that in the renormalization of Algorithm 24, we assume that D is a power of two,
and all multiplications and divisions are actually implemented with bit shifts. The carry
propagation with a D-symbol output, shown in Algorithm 25, is very similar to Algorithm 3.

In Algorithm 5 the code value selection is made to minimize the number of bits, assuming
that the decoder pads the buffer d with sufficient zeros. This inconvenience can be avoided
by simply adding a proper extra symbol at the end of the compressed data. Algorithm 26
shows the required modifications. It shifts the interval base by a small amount, and resets
the interval length, so that when procedure Encoder Renormalization is called, it adds the
proper two last output symbols to buffer d. This way, correct decoding does not dependent
on the value of the symbols that are read by the decoder (depending on register size P ) past
the last compressed data symbols.

With integer arithmetic the decoder does not have to simultaneously update the interval
base and code value (see Algorithm 8). Since decoding is always based on the difference v−b,
we define V = DP (v − b) and use only V and L while decoding. The only other required
change is that we must subtract from V the numbers that would have been added to B.

57
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Algorithm 22
Function Arithmetic Encoder (N,S, M,C,d)

1. set { B ← 0; L ← DP − 1; ? Initialize interval
t ← 0; } ? and symbol counter

2. for k = 1 to N do ? Encode N data symbols
2.1. Interval Update (sk,M, B,L,C); ? Update interval according to symbol
2.2. if L < DP−1 then ? If interval is small enough

Encoder Renormalization (B, L, t,d); ? then renormalize interval
3. Code Value Selection (B, L, t,d); ? Choose final code value
4. return t. ? Return number of code symbols

•

Algorithm 23
Procedure Interval Update (s,M, B, L,C)

1. if s = M − 1; ? If s is last symbol set first product equal
then set Y ← L; ? to current interval length

else set Y ←
⌊
[L · C(s + 1)] ·D−P

⌋
; ? or else equal to computed value

2. set { A ← B; ? Save current base
X ←

⌊
[L · C(s)] ·D−P

⌋
; ? Compute second product

B ← (B + X) mod DP ; ? Update interval base
L ← Y −X; } ? Update interval length

3. if A > B then Propagate Carry (t,d); ? Propagate carry if overflow
4. return.

•

Algorithm 24
Procedure Encoder Renormalization (B, L, t,d)

1. while L < DP−1 do ? Renormalization loop
1.1. set { t ← t + 1; ? Increment symbol counter

d(t) ←
⌊
B ·D1−P

⌋
; ? Output symbol

L ← (D · L) mod DP ; ? Update interval length
B ← (D ·B) mod DP ; } ? Update interval base

2. return.
•
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Algorithm 25
Procedure Propagate Carry (t,d)

1. set n ← t; ? Initialize pointer to last outstanding symbol
2. while d(n) = D − 1 do ? While carry propagation

2.1. set { d(n) ← 0; ? Set outstanding symbol to zero
n ← n− 1; } ? Move to previous symbol

3. set d(n) ← d(n) + 1; ? Increment first outstanding symbol
4. return.

•

Algorithm 26
Procedure Code Value Selection (B, L, t,d)

1. set { A ← B; ? Save current base
B ←

(
B + DP−1/2

)
mod DP ; ? Increase interval base

L ← DP−2 − 1; } ? Set new interval length
2. if A > B then Propagate Carry (t,d); ? Propagate carry if overflow
3. Encoder Renormalization (B, L, t,d) ? Output two symbols
4. return.

•

Algorithm 27
Procedure Arithmetic Decoder (N, M,C,d)

1. set { L ← DP − 1; ? Initialize interval length
V =

∑P
n=1 DP−nd(n); ? Read P digits of code value

t ← P ; } ? Initialize symbol counter
2. for k = 1 to N do ? Decoding loop

2.1. set sk = Interval Selection (V, L, M, C); ? Decode symbol and update interval
2.2. if L < DP−1 then ? If interval is small enough

Decoder Renormalization (V, L, t, d); ? renormalize interval
4. return.

•
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Algorithm 28
Function Interval Selection (V, L, M,C)

1. set { s ← 0; n ← M ; ? Initialize bisection search limits
X ← 0; Y ← L; ? Initialize bisection search interval

2. while n− s > 1 do ? Binary search loop
2.1. set { m ← b(s + n)/2c; ? Compute middle point

Z ←
⌊
[L · C(m)] ·D−P

⌋
; } ? Compute value at middle point

2.2. if Z > V ? If new value larger than code value
then set { n ← m; ? then update upper limit

Y ← Z; }
else set { s ← m; ? else update lower limit

X ← Z; }
3. set { V ← V −X; ? Update code value

L ← Y −X; } ? Update interval length as difference
4. return s.

•

Algorithm 29
Procedure Decoder Renormalization (V, L, t,d)

1. while L < DP−1 do ? Renormalization loop
1.1. set { t ← t + 1; ? Increment symbol counter

V ← (D · V ) mod DP + d(t); ? Update code value
L ← (D · L) mod DP ; } ? Update interval length

2. return.
•

In Algorithm 7 we used sequential search for interval selection during decoding, which in
the worst case requires testing M − 1 intervals. In Algorithm 28 we use bisection [17, 19, 39]
for solving (1.16), which requires testing at most dlog2(M)e intervals (see Sections 2.2.3 and
2.3.2). Finally, the decoder renormalization is shown in Algorithm 29.
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