
Data Compression via Textual Substitution

JAMES A. STORER AND THOMAS G. SZYMANSKI

Princeton University, Princeton, New Jersey

Abstract. A general model for data compression which includes most data compression systems in the
literature as special cases is presented. Macro schemes are based on the principle of finding redundant
strings or patterns and replacing them by pointers to a common copy. Different varieties of macro schemes
ma; be defined by specifying the meaning of a pointer; that is, a pointer may indicate a substring of the
compressed string, a substring of the original string, or a substring of some other string such as an external
dictionary. Other varieties of macro schemes may be defined by restricting the type of overlapping or
recursion that may be used. Trade-offs between different varieties of macro schemes, exact lower bounds
on the amount of compression obtainable, and the complexity of encoding and decoding are discussed, as
well as how the work of other authors relates to this model.

Categories and Subject Descriptors: E. 4 [Data]: Coding and Information Theory—data compaction and
compression; F. 1. 3 [Computation by Abstract Devices]: Complexity Classes—reducibility and completeness
F. 2. 2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—pattern
matching.

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Textual substitution, macro expansion, dictionary, NP-completeness

1. Introduction
On-line secondary storage space is one of the most restricting resources in many
modern computer installations, particularly in those employing multiuser time-shar-
ing systems. Fast algorithms for compressing and restoring data files can do much to
alleviate this problem. Some of the more popular data compression schemes described
in the literature include statistical encoding techniques such as Huffman codes [8],
which typically encode a block of source data as a variable-length string of bits
determined by various statistical properties of the source data; incremental encoding
methods (e. g., [21, 34]), which typically compress a file by recording only the
difference between successive records; and textual substitution or macro encoding
schemes (e. g., [6, 7, 12-14, 19, 20, 25-28, 30, 31, 33, 35, 37-39]), which factor out
duplicate occurrences of data, replacing the repeated elements with some sort of
special marker identifying the data to be replaced at that point. In addition, many
ad-hoc methods for handling data with certain known characteristics appear in the
literature.
This research was supported in part by the National Science Foundation under Grant MCS 74-21939 and
in part by Bell Laboratories.
Authors' present addresses: J. A. Storer, Department of Computer Science, Brandeis University, Waltham.
MA 02254; T. G, Szymanski, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0004-5411/82/1000-0928 $00. 75

Journal of the Association for Computing Machinery, Vol. 19, No 4, October 1982, pp. 928-951

Data Compression via Textual Substitution 929

This paper is devoted exclusively to the properties of the macro model for data
compression. We study two major types of macro schemes, the types being differ-
entiated by the location where the factored-out text is stored. Section 2 contains a
discussion of our model along with some basic definitions, Sections 3 and 4 present
our results for the two major types of schemes considered, and Section 5 examines
the relative performance of the various compression schemes introduced in the
preceding sections. To reduce the size of this paper, NP-completeness results are
presented in [30]. However, the more important results of [30] are summarized here.

Before proceeding to the next section, we define the following notation:
(1) If s and sl denote strings and n 1 is an integer, s1s2 denotes the concatenation

of s1 with s2, sl denotes s1s2 • • • sn, and sn denotes sl, s0 denotes the
empty string.

(2) We use the term collection to mean multiset. 1

(3) If s is a string, | s | denotes the length of s, and if s is a collection, |s| denotes the
number of elements in s (with each element being counted as many times as it
appears in s).

(4) We extend the min function to strings by defining

(5) For a real number A, denotes the least integer greater than or equal to h.

2. The Model and Basic Definitions
We shall treat the source data as a finite string over some alphabet. With external
macro schemes, a source string is encoded as a pair of strings, a dictionary and a
skeleton. The skeleton contains characters of the input alphabet interspersed with
pointers to substrings of the dictionary. The dictionary is also allowed to contain
pointers to substrings of the dictionary. The source string is recovered by substituting
dictionary strings for pointers. With internal macro schemes, a string is compressed
by replacing duplicate instances of substrings with pointers to other occurrences of
the same substrings. The result is a single string of characters and pointers.

Throughout this paper let p 1 denote the implementation-dependent size of a
pointer. 2 If x is a string containing pointers, the length of x, denoted | x |, is defined
to be the number of characters in x plus p times the number of pointers in x. We
shall treat a pointer as an indivisible object which, in some unspecified fashion,
uniquely and unambiguously identifies some string which is referred to as the target
of that pointer. The way a pointer is written is not important; the only assumption
we make is that it is always possible to determine by inspection of a pointer the
length of its target. 3 For simplicity we shall write a pointer as a pair (n, m), where n
indicates the position of the first character in the target, 4 m indicates the length of the
target, and | (n, m) | is the pointer size p. Without loss of generality it will always be
assumed that m > p.
1 A multiset is a set in which repetitions are allowed. For example {a, a, b} is a multiset.
2 We assume that all pointers within a given string have a uniform size. (Variable-length pointers are
considered in [30]) We also assume p to be an integer, although our results generalize to nontntegral
pointer sizes
3 It is not always necessary to make this assumption and, in fact, it can be useful to remove it See [30] for
a discussion of this.
4 n can be either an absolute location or a displacement. For example, with internal schemes, n could be
the distance from the pointer to its target.

930 J. A. STORER AND T. G. SZYMANSKI

As an example of these ideas, let p = 1, and consider the string
w = aaBccDaacEaccFacac,

which might be encoded under the external macro model as
x = aacc#(1, 2)B(3, 2)D(1, 3)E(2, 3)F(2, 2)(2, 2),

where # separates the dictionary from the skeleton. For convenience, we assume
| # | = 0. The compression achieved by the string x (i. e., the ratio | x |/| w |) is 14/18. Using
the internal macro model, w could be encoded as

y = aaBccD(1, 2)cEa(4, 2)Fac(13, 2),
achieving a compression of 15/18.

Implementation considerations motivate us to describe a number of variations on
our basic models. A scheme is recursive if a macro body (i. e., a string that is a target
of a pointer) is allowed to itself contain pointers. Two pointers overlap if their targets
overlap. Whether overlapping pointers are permitted in the external model depends
highly on the implementation chosen for the dictionary. 5 An original pointer is one
which denotes a substring of the original source string, whereas a compressed pointer
denotes a substring of the compressed representation itself. The string y of the
previous example contains compressed pointers. Using original pointers, we could
encode w as

z = aaBccD(1, 2)cEa(4, 2)F(8, 2)(8, 2),
achieving a compression of 14/18. Original pointers are more natural for one-pass
decoding. Compressed pointers allow the recovery of portions of the source string
without requiring the implicit decompression of the entire string. A left (right) pointer
is one which denotes a substring occurring earlier (later) in the string. Considering
the strings x, y, and z presented above, only x uses overlapping pointers, only z uses
recursion, and none of these strings use right pointers. By using both left and right
pointers it is possible to save additional space over the use of just one direction. For
example, using both right and left pointers, the compressed forms y and z presented
above could be replaced by

y = (5, 2)B(10, 2)DaacEaccF(6, 2)(6, 2),
z = (7, 2)B(12, 2)DaacE(8, 2)cF(8, 2)(8, 2),

achieving a compression of 14/18 and 13/18 respectively. We discuss recursion in relation to
original pointers primarily to study the "power" of various methods. With original
pointers, a pointer is recursive if all or part of the string it represents is represented
by a pointer.

Cycles cannot occur in compressed forms with compressed pointers, but using
original pointers, cycles can often make sense. For example, the compressed form
ab(5, 2)a(1, 3) uniquely determines the palindrome abaaaaba even though the two
pointers in this compressed form comprise a cycle. Here the pointers (5, 2) and (1, 3)
are a cycle in the sense that each points to a portion of the string represented by the
other. An example of a degenerate cycle is given by the compressed form a(1, n),
which uniquely determines the string an+1. Schemes which allow recursion but not
cycles are said to have topological recursion. From the above discussion it should be
clear that topological recursion is not necessary for a compressed form to be uniquely
5 Certain implementation considerations can lead to the placement of various restrictions on the kinds of
overlapping permitted. Some of these restrictions are described in [30, 32].

Data Compression via Textual Substitution 931

decodable. However, it can be useful to consider topological recursion for three
reasons. First, authors in the past (such as Lempel and Ziv) have assumed this.
Second, study of such schemes leads to a deeper understanding of the power of
original pointers. Third, topological recursion may model some practical considera-
tions in the design of efficient original pointer compression methods.

The above discussion leads us to formally define four basic macro schemes and
three types of restrictions which may be placed on any of these schemes. Throughout
this paper, denotes the underlying alphabet from which the data in question is
constructed.

Definition 1. A compressed form of a string s using the EPM (external pointer
macro) scheme is any string t = s0#s1 satisfying6

(1) s0 and s1 consist of characters from and pointers to substrings of s0.
(2) s can be obtained from s1 by performing the following two steps:

(a) Replace each pointer in s1 with its target.
(b) Repeat step A until s1 contains no pointers.

Definition 2. A compressed form of a string s using the CPM (compressed pointer
macro) scheme is any string t satisfying

(1) t consists of characters from and pointers to substrings of t,
(2) s can be obtained from t by forming the string t#t and then decoding as with the

EPM scheme.
Definition 3. A compressed form of a string s using the OPM (original pointer

macro) scheme is any string t satisfying
(1) t consists of characters from and pointers representing substrings of s.
(2) s can be obtained from t by replacing each pointer (n, m) by the sequence of

pointers (n, 1), (n + 1, 1),..., (n + m — 1, 1) and then decoding as with the
CPM scheme, with the stipulation that pointers are considered to have length 1,

Definition 4. A compressed form of a string s using the OEPM (original external
pointer macro) scheme is any string t = s0#s1 satisfying
(1) t consists of characters from and pointers.
(2) s0 may be decoded using the OPM scheme to produce a string r. Furthermore,

pointers in s1 point to substrings of r.
(3) s may be obtained by replacing each pointer in s1 with its target in r.

A contraction of a string s for pointer size p according to a given scheme is a
shortest compressed form of s using that scheme with pointer size p. A contraction of
a string s will be denoted by (s). 7 We shall refer to the process of replacing a string
r by a pointer as factoring out r and often refer to a string that is a target or potential
target as a factor.

Definition 5. A CPM (OPM) pointer q1 depends on pointer q2 if the target of q1
contains q2 (all or part of the string represented by q2) or if there is a pointer q3 such
that q1 depends on q3 and q3 depends on q2. A macro scheme is restricted to no
recursion if dependent pointers are forbidden, and to topological recursion if no
6 For convenience we assume throughout this paper that |#| = 0.
7 A string may have more than one minimal-length compressed form. For formal discussions we can
always ensure that (s) is unique by assuming a lexicographic ordering.

932 J. A. STORER AND T. G. SZYMANSKI

pointer may depend on itself; that is, it must be possible to sort topologically8 the
pointers of a compressed form according to their dependencies.

Definition 6. Two pointers overlap if their targets overlap and strictly overlap if
their targets overlap but neither target is a substring of the other. A macro scheme is
restricted to no overlapping if overlapping pointers are forbidden.

Definition 7. A CPM (OPM) pointer q points to the left if the leftmost character
of its target is to the left of q (the leftmost character of the string represented by q).
A right pointer is similarly defined. A macro scheme is restricted to unidirectional
pointers if ail pointers must point in the same direction (of course, with the EPM and
OEPM schemes, this only applies to the external dictionary). As a special case of
this, we can restrict a macro scheme to have only left or right pointers.

The different combinations of the four basic macro schemes we have defined and
the recursion, overlapping, and pointer direction restrictions provide us with a large
number of data compression methods. The combinations are sufficiently general to
cover virtually all of the text substitution schemes proposed in the literature.
Discussion of the utility and appropriateness of various restrictions to the models are
deferred until later in the paper.

We have not discussed the concept of adding to pointers arguments which allow
the specification of modifications to be made on a factor before it is substituted.
Macro schemes with arguments generally have more power than ones without. Also,
a few data compression methods presented in the literature require a macro scheme
with arguments to model them, for example, the subsequence and supersequence
compression methods discussed in [16]. Macro schemes with arguments will not be
discussed in this paper, but it it should be noted that the macro model can be
extended to allow this generality.

3. The External Macro Model
The external macro model views the collection of macro bodies as residing outside
the remainder of the compressed string. This makes external schemes ideal for
compressing collections of strings using a common dictionary. There are several
reasons why it is more natural to treat all pointers as compressed pointers when
discussing this model. First, authors in the past have used the EPM scheme and not
the OEPM scheme (the authors mentioned in the introduction who used external
schemes all considered variants of the EPM scheme). Second, it allows us to
decompress arbitrary portions of the data without first having to produce the entire
string. Third, compressed pointers often require less space than original pointers. For
these reasons, we concentrate our attention in this section on the EPM model and
then indicate how our results can be extended to the OEPM model. As we shall see
in the next section, there are advantages to using original pointers over compressed
pointers that justify consideration of the OEPM model. In many cases the extension
of results to the OEPM scheme is trivial, since if recursion is forbidden, original and
compressed pointers become equivalent in power. Similarly, if overlapping is forbid-
den, unidirectional and bidirectional pointers become equivalent.

THEOREM 1. For all strings s, if only topological recursion is allowed, then (assuming
s is compressible) both | EPM(s) | and | OEPM(s) | are

(a) log2(|s|/p)+1.9p.
8 For a discussion of topological sorting, see [10].

Data Compression via Textual Substitution 933

(b) 3p foga(\s\/p) - 0.02/> when overlapping is forbidden.
(c) 2(/>|sj)I/2 when recursion is forbidden.
(d) 2{p\ s\)1/2 when both recursion and overlapping are forbidden.

(e) (ff)-(rf) hold even if pointers are required to be unidirectional.
If nontopological recursion is allowed, then
(/) The bounds of(a)-(e) hold for the EPM scheme.

But
(g) i OEPM(S) | 2p + 1, independently of what overlapping and pointer direction

restrictions are made.
Furthermore, all of the bounds in (a)-(g) are tight; that is, each is attained for infinitely
many strings s.9

PROOF. For (a)-(e), since | OEPM($) | EPM(S) J, it is sufficient to show that the
OEPM scheme satisfies these bounds and the EPM scheme can attain them infinitely
often.

First let us consider (a). We can assume that s *= a1'1 (for some a in) because
I oEPMfa1'1) | OEPM(J) |. It is easy to show that for some/ < k 2p and n,

where q,, 1 i < n, points to the string represented by everything to the left of it and
qn+i points to some substring of length \s\ in the dictionary. Since qt points to a
string of A: characters, we must have k>ptor else a shorter contraction of* could be
produced. Similarly, if k > 1p, we could produce a shorter contraction by representing
a* by ak~p~l followed by a pointer to this string. Thus we have

For any p < i 2p and n, the bound min{/i|log2{|s|/0i + i + p:p < i 2p} is
achieved exactly by the EPM scheme on the strings =

We now consider (b). Again we can assume that s = a1*1. Since overlapping is
forbidden, the pointers of OEPM(S) can be divided into a sequence of sets S\,..., Sm
such that the pointers in S,, 1 < i m, have targets whose compressed representation
consists of pointers in some s,, j < i; in fact, since we are concerned only with worst-
case performance,10 we can assume that/' = i — 1. We can also assume that St, I /

m, contains at most three pointers. This is because for any k 4 there are an / and
/ such that 2i + 3/ 2'3J, and so we can replace a set 5, of four or more pointers
by a sequence of sets having at most three pointers, where the last set in the sequence
will represent a string at least as long as that represented by the original sequence of
four or more. Hence, for some x 2 we can assume that for all i > x, Si contains
9 Actually, the bound in (a) is just an approximation for the expression min{^|loga(|j|/i)| + i + />:/»< i

2p], which is attained exactly infinitely often Similarly, the bound in i,b) is just an approximation for
the expression min {3p | Iog3(| s | //} | + /: 2p< i 4p), which is attained exactly for infinitely many strings.
"•* It is not necessary to consider a compressed form of length x for a siring ay if there is a compressed form
of length <x(x) for a string a * where 2 y(z>y).

934 J. A. STORER AND T. G. SZYMANSKI

exactly three pointers. This is because we can assume that the sets of two come first
and a sequence of three two-pointer sets can be replaced by two three-pointer sets.
Given this, it can be assumed that for some 2p < k 1, and n,

is of the form

where q0 points to depending on the
values of L and M; and for 3 . Thus we have

For any 2p < i 4p and n > 1, the bound of min{3p| log3(| s |/i) | 4p}
is achieved using the EPM scheme with no overlapping on the string s = a .

The proofs for (c) and (d) appear in [30]. All of the proofs of (a)-(d) make use of
left pointers only, and so (e) follows, (f) follows trivially because compressed pointers
cannot form cycles, and hence with the EPM scheme all recursion must be topological.
For (g) we may again assume that s = for some a in . If s is compressible using
the EOPM scheme, then s must contain at least two pointers and at least one
character. Hence 2p + 1 is a lower bound. It is also tight, since a(1, |s| — 1)#(1, |s|)
is a compressed form for s=

For topological recursion, Theorem 1 says just what one would expect; there is an
(p log| s|) lower bound on the size of a compressed string when recursion is allowed

(log2 with overlapping and log3 without) and an lower bound when
recursion is not allowed. For nontopological recursion the bound of (g) may seem
unnatural. Clearly we cannot represent a string of arbitrary length using a constant
amount of space. The bound of (g) simply illustrates the need for the pointer size to
be a function of the string size to model situations where pointers may indicate strings
of arbitrary length.

It should also be pointed out that the bounds of Theorem 1 apply primarily to
"pathological" strings; in practice, reducing the size of a file by a small constant
factor may be very significant. However, much of the utility of Theorem 1 comes
from the fact that it provides exact bounds which are needed in several of our NP-
convpleteness11 proofs.

The next theorem considers encoding algorithms for the EPM model. Wagner [35]
presents a polynomial-time algorithm for compressing a string, assuming that the
dictionary of macro bodies is given as input to the encoding algorithm. However, no
mention is made as to how the selection of the best possible dictionary is accom-
plished. Several heuristic methods for constructing dictionaries have been presented
in [20] and [25]. Neither of these guarantees optimal compression or even provides
bounds on the compression that is obtainable. The reason for this gap in the literature
is the NP-completeness of finding
11 For a definition of NP-completeness and related terms, see [1]. All of our proofs show NP-completeness
in the sense of Karp [9] (which implies that of [3]).

Data Compression via Textual Substitution 935

THEOREM 2. Given a string s and an integer K, it is NP-complete to determine
whether I AEPM(S)] ~: K in any of the following situations'.

(a) both recursion and overlapping allowed;
(b) recursion allowed, overlapping forbidden;
(c) recursion forbidden, overlapping allowed;
(d) both recursion and overlapping forbidden;
(e) unidirectional pointers and any of (a)-(d).

Furthermore, the above are true regardless of whether p is part o f the problem input or
is constrained to be a f ixed integer greater than 1. In fact, we show (b) and (d) to be
true even if p = 1.

PROOF. It should be clear that no one part of the theorem directly implies any
other. Thus several reductions are used. The reductions employed include the node
cover problem [9], the restricted node cover problem [17], the K-node cover problem
[30], and the superstringproblem [4, 17]. As mentioned in the introduction, proofs of
all NP-completeness results appear in [30]. However, we shall include the proof of
(b) and (d) as a "sample proof."

Proof o f (b) a n d (d) f o r p > 1. Let G ffi (Vffi {vl vn}, E --- {el e,~}), K
be an instance of the node cover problem, and let p = p0. Let $ be a special symbol,
and let @ denote a new, distinct symbol each time it occurs. For v, in V, let V, ffi
$vf-l$, and for e, = (b, vk) in E, let E, ffi $v~-l$v~-l$. Now let

(t01ji~ 1)(m) s = v~@ ,_II E,@ .

We claim that G has a node cover of size <_K if and only if I A(s) [<_ I s I + K - m.
First suppose that G has a node cover X _ V of size K. We shall construct a

compressed form t for s (having length I sl + K - m), where t i s ' o f the form
s0#(IIf-1 Ilj*=~ ~ @)(H?-I/~,@), where So contains those V, for which v, is in X, and p-1 p-1 is Vj if vj is not in X and a pointer to b in So if b is in X. I f E, is $vy Sv k $,
then /~, is either rvp-l$ or $v~-lq, where r is a pointer to b in so and q is
a pointer to vk in So. Since X is a node cover, this can always be done. I f we now com-
pute the length of t, Is0] -~ K(p + 1), [Hf-1H~=~ ~ @ l - IHf-x 1-I~*=t v j @ l - p K ,
and [H ~ L @ I ffi IH~=I E,@[- m. Hence I A(s)l _ Itl ffi Is[+ K(p + 1) - p K - m
=lsl + K - m, as was to be shown.

Conversely, suppose that IA(s) l < I sl + K - m. We shall show that G has a
node cover of size at most K. First observe that since overlapping of pointer
targets is forbidden, no pointer in A(s) can refer, for any strings x and y, to a string
of the form xv,$by, x@y, or x@y, since such a string can occur at most once
in s and no gain can be achieved by factoring it out. Thus A(s) is of the form
s0#(H~=l [_I~=1 ~ @)(Hm~/~,@), where so is a dictionary of macro bodies and the
~ 's and E,'s are the shortest compressed forms of the Vfs and Ei's, respectively,
using So. As mentioned earlier, without loss of generality we are assuming throughout
this paper that every pointer references a string of length at least p + 1. Thus, since
1 1I, I = P + 1, we can infer that each if', is either V~ itself or a pointer to an occurrence
of v, in So. Similarly, since [E, [ffi 2/) + 1, each/~, must either consist of E, itself or else
be a string of the form rv~-a$ or gv~-~r, where r is a pointer to some II, in so. Now let
L be the number of E,'s such that E, ffi E,, that is, the number of J~,'s that have not
had a factor removed. Then [H7'=1 J~,@ I = I H~I E, @ I - (m -- L), since removing a
factor from an E, saves one character. Let J be the number o f V/'s in So. Then

936 J. A. STORER AND T. G. SZYMANSKI

|s0|=J(p+1) and - Jp, because each vi that
is replaced by a pointer saves one character. Thus = J(p + 1) + |s | — Jp —
(m- L) = |s| + J + L - m, and so J + L K. We now claim that G has a node
cover of size J + L formed by taking the J nodes represented in s0 and one node
from each of the L edges not factored in Therefore G has a node cover of size
K, as was to be shown.

Proof of (b) and (d) for p = 1. The following proof is similar to the original proof
of this result [30] in that it employs a reduction to the node cover problem for degree
three graphs. However, although the actual the actual construction is slightly longer,
the proof of its correctness is simpler. This simplified proof is due to J. Gallant.

Let G = (V = {v1 , . . . , vn), E = (e1,..., em}), K be an instance of the node cover
problem for which all nodes have degree 3. 12 As in the proof for p > 1, let $ be a
special symbol, and let @ denote a new, distinct symbol each time it occurs. For vi
in V let

Vl = vi and Wl=$2vi$2,
and for el = (vj, vk) in E let

Ei = $2vi$3vk$2.
Now let

The claim is that G has a node cover of size K if and only if |s | + K - 14n.
The first half of the proof argues that if X is a minimal node cover for G, then a

compressed form for s can be constructed as follows:
(1) The two copies of each Vl go to a copy of Vi in the dictionary and two pointers

in the skeleton.
(2) The two copies of each Wi go to two copies of $ followed by a pointer to Vi

followed by a $ in the skeleton if v2 is not in X; otherwise the two copies of Wl
go to Wi in the dictionary and two pointers in the skeleton.

(3) Each Ei representing el= (vj, vk) goes to a pointer to $2vj$2 followed by a pointer
to vk followed by $ if vj is chosen to cover the edge; otherwise Ei goes to $
followed by a pointer to vj followed by a pointer to $2vk$2.

A compressed form for s as constructed above saves one character for each pair of
V'ls for a total of n: four characters for each pair of W'ls when v2 is not in X, three
characters for each pair of W'is when vi is in X for a total of 4n - K, and six
characters for each Ei for a total of 6m. Since m = n, this yields |s| -
n - 4n + K - 6m = |s| + K -14n.

The other half of the proof requires more work. Here it roust be argued that the
method of compressing s as described above is the best possible. This is done by
considering several cases that rest heavily on the fact that all nodes in G have degree
3. The degree-3 restriction makes it unprofitable to factor out many strings that might
otherwise be factored if nodes with large degrees were present. We leave the details
of this half of the proof to the reader. Note that the above reduction is for the case
where recursion is forbidden. If recursion is allowed, the same construction may be
used, except that one copy of Wl should be used instead of two.
12 Using a result from [5], it is easy to show this restriction of the node cover problem to be NP-complete;
see [17].

Data Compression via Textual Substitution 937

In [30], cases (b)-(e) of Theorem 2 are shown to hold tor the EOPM scheme. Case
(a) is shown for the problem of compressing collections, but the single string problem
remains open at the time of the writing of this paper. In addition, in [30] it is
conjectured that all of (a)-(e) of Theorem 2 can be shown for p = 1.

Throughout this paper we assume that the alphabets over which strings are written
are unbounded in size. However, results concerning lower bounds on encoding
complexity are stronger if they apply to the case where all strings are assumed to be
written over some fixed size alphabet, and, although unbounded size alphabets model
many practical situations (such as when entries in a system dictionary are taken to be
the basic characters), there are certainly many situations in which it is more realistic
to consider strings to be written over some fixed finite alphabet. Thus it is worthwhile
to consider the complexity of compressing strings when it is assumed that all strings
are written over a fixed size alphabet. Since our motivation for doing this is to model
practical situations, when discussing fixed size alphabets we also require that pointers
of a given size can only encode a finite amount of information. This requirement is
met by stipulating that the pointer size p be dependent on the string being processed.
Because complexity results concerning fixed size alphabets are more technical, we
shall only state a few sample theorems to indicate the flavor of these results and only
for the case when both recursion and overlapping are forbidden. Suppose we allow
pointers to be able to indicate any substring of the source. Then a pointer's length
must be some implementation-dependent multiple of the logarithm of the string
length.

THEOREM 3. If recursion and overlapping are forbidden, then, giving a string s over
any alphabet with at least three symbols, an integer K, and a real h > 0, it is NP-
complete to determine whether s has an EPM compressed form t satisfying | t | K
when the pointer size is

Two other natural ways to determine pointer size are either to require that the
information content of a pointer be sufficient to distinguish all the pointers in an
encoding or to require that a pointer be able to identify any substring of the
dictionary. To this end, if t is an encoding of some string using the EPM scheme,
let be the number of distinct pointers in t, and let d(t) be the dictionary
portion of t.

THEOREM 4. If recursion and overlapping are forbidden, then, given a string s over
any alphabet with at least three symbols, an integer K, and a real h 1, it is NP-
complete to determine whether s has an EPM compressed form t satisfying | t | K in
the following situations:

(a) p is
(b) p is

In [30], results similar to the above are shown for other combinations of restrictions.
Although Theorems 3 and 4 apply only for alphabets of size 3 or greater, we
conjecture that these results can be strengthened to apply for two-symbol alphabets.

The proofs of the last two theorems involve an extra level of complexity over the
corresponding proofs for the unbounded alphabet cases, because when one attempts
to embed, say, an NP-complete graph problem in a data compression problem, one
is forced to encode nodes of the graph as strings. Care must be taken to ensure that
the integrity of these strings is maintained during compression.

As was indicated at the start of this section, external macro schemes are useful for
compressing collections of strings. Many of the NP-completeness results of this

938 J. A. STORER AND T. G. SZYMANSKI

section can be strengthened when applied to collections. For example, some results
concernin$ bounded-size alphabets, when extended to collections, apply for two-
symbol alphabets. Storer [30] also contains results concernin$ limitations on the size
of strings in a collection and factors in compressed forms.

4. The Internal Macro Model

In the internal macro model it is rather unnatural to forbid the use of recursion or
overlapping. We shah therefore concentrate on the four combinations provided by
choosing between compressed and original pointers and choosing between unidirec-
tional and bidirectional pointers. In addition, we consider the topological recursion
restriction, not because we are necessarily claiming it to be a natural restriction for
the OPM scheme, but because studying topological recursion appears to lend insight
into the relative power of compressed and original pointers. As done in the last
section, we fn'st start with some performance bounds.

T t m o ~ 5. For all strings s (assuming s is compressible),

(a) I Aoeu(s) I >_ P + 1;
(b) for topological recursion, TM both IAcPu(s)l and IAoeu(s)l are >_plog~(lsl/p)

+ 0.9p.

Furthermore, the above bounds are tight ~4 and hold regardless o f whether unidirectional
or bidirectional pointers are used.

PROOF. Similar to that of Theorem 1. I-1

The next theorem deals with the relative power of compressed and original
pointers.

Tl~op.v~ 6. For any string s, I Aopu(s)l <_ I Ao .M(s)l, independently o f what
restrictions are made (provided the same restrictions are used for both). Furthermore,
for any real h > 0:

(a) Using any alphabet of size >-1, there are infinitely many strings s for which

I Aop.(s) l
<h.

I Acp, (s) l
(b) For topological recursion, using any alphabet o f size >_2, there are infinitely many

strings for which

IAoPJ,(s) l < l + h.
l 3

PROOV. Since a compressed pointer may always be converted to an original
pointer, it follows that for any string s, [~opu(s) [~ [ACl, M(S) [independently of what
restrictions are made. (a) follows trivially from Theorem 5, since for the string s ffi a",
I oP.(s) l - p + I but I P-(s) I is o(tTlog~n).

Let us now consider (b). For n a multiple of p define
n/p

s,, •" a"b n I] (a~b"-(t-1)P) •
i--1

~a Remember that with compressed pointers, all recursion must be topological.
14Similarly to Theorem l(a), the bound of B is just an ,approximation for the expression min{p.
Ilog2(Isl/i)l+ i:p < i ~ 2p}, and it is this value that is achieved exactly by infmitely many strings.

Data Compression via Textual Substitution 939

Using the OPM scheme, sn can be represented by the compressed form

where t is the best compressed representation of anbn. Since |t| = O(plog2n), we
have On the other hand, if we
attempt to factor sn using the CPM scheme, a shortest compressed form is

that is, the leading factor of anbn is preserved intact. Here the n/p pointers to the
right of anbn that point into anbn "chop up" anbn so that it cannot be factored with
compressed pointers; that is, if anbn were factored, then at least some of (he pointers
to the right of anbn would be pointing to "part of a pointer" which is not allowed for
compressed pointers. Through the analysis of several cases, it can be shown that the
above compressed form is the best possible, and thus = 3n. Hence, for any
real h > 0 we have, for sufficiently large n,

We do not yet know whether the bound in (b) is the best possible. Also, it should
be noted that although , in principle it is possible for a
compressed pointer to require less space than its corresponding original pointer since,
for a given string s, compressed pointers may point to smaller strings.

We now consider performance bounds concerning pointer direction. First, it is
obvious that using either the CPM or OPM schemes, for any string s,

In view of this, we shall not bother to state "dual" theorems, that is, theorems that
may be obtained from a previous theorem by changing all occurrences of to

etc.
Before proceeding we present a short technical lemma that allows us to relate

results concerning left versus right pointers to results concerning unidirectional versus
bidirectional pointers.

LEMMA 1. Using any macro scheme, for a given alphabet if there are infinitely
many strings s over for which < h, then there are infinitely many
strings s' over an alphabet where for which

PROOF. Given a string s over an alphabet = {a1 , . . . , an} for which
be new symbols not in and let s' = st, where t

is the reverse of the string obtained by replacing each symbol in s by It is easy
to check that

and that s' is written over an alphabet of size 2

940 J. A. STORER AND T. G. SZYMANSKI

THEOREM 7. Let O P M / T R denote the OPM scheme restricted to topological
recursion. For any real h > 0:

(a) There are infinitely many strings s for which

1 I AcPM/n(s) I < + h.
IAceM/L(s)l

(b) Using any alphabet of size 2 or more, there are infinitely many strings s for which

l a o ~ / ~ (s) I < max ' 2p + :2 + h

and

1 [AoPM/TR/R(S)[< - + h.

[AoFM/TR/L(s) I 3

PROOF

(a) For any integer n > 1, let

n--l((~l))
sn= H t,.: b, , ~--1 \\:--1

FlY +t where t,j = ltkw ap. Using right pointers, each t ,j except t,,_~,~ can be replaced by a
pointer into tn-~,v Hence we have

I AcPim(Sn)] --< + n p + n -- 1
\ t - 2

= ½pn ~ + O(pn).

Using left pointers, the target of a pointer must be a substring of the compressed
form of t,,: for some i and j. This is because for each t,,: and t,,:+l, if a is the last
character of t,,: and b the first character of t,,j+x, the string ab occurs nowhere else in
sn (in addition, the b,'s separate s,~-, and si+m). Thus, since t,,: cannot be a substring
of tx,~ if i < x or i = x & y < j, we have

I ao,../,.(s,,) I -> ~,:, 2 + n - 1

= pn 2 + O(pn),

and hence for sufficiently large n,

I aoPM/R(sn) l _ pn212 + O(en) < ½ + h.
l aoPM/L(s~)l pn 2 + O(pn)

(b) Let us first consider topological recursion. For n > 0 let
n+l

sn = [I a'ab•.
z--1

Since Sn can be factored by replacing each string a~°b w, 1 <_ i <_ n, by a pointer into
the string ae'+l)'b~n+l)P, it follows that

I Aovi/a(sn) I ~-- pn + O(p log2(pn)).

Data Compression via Textual Substitution 941

The key observation for calculating IAopM/,.(sn)l is to note that the largest possible
factor to the left of a~°b '9, 1 < i <_ n + 1, is a('-l)pb O-1)p. From this reasoning it follows
that [AOemL(Sn) l ffi 3pn + 21o. Hence,

I AopM/R(s.) I < _l + h
I AopM/,(S.)I 3

for sufficiently large n.
The construction for nontopological recursion is the same, except that we now

have the option of writing a'/¢ as aq~bq2, where qa and q2 are the appropriate
pointers. []

COROLLARY 7.1. The bounds ½ + h, max{½, p/(2p + 2)} + h, and ~ + h stated in
Theorem 7 are for left versus right pointers. If, instead, unidirectional and bidirectional

2 pointers are compared, then the bounds -~ + h, max{½, 2p/(3p + 2)} + h, and ½ + h
follow. Furthermore, the alphabet sizes needed are at most double the sizes stated in
Theorem 7.

PROOF. Follows directly from Lemma 1. []

We do not yet know whether the bounds of Theorem 7 are tight. One technique
for deriving lower bounds on ratios concerning pointer directions is to consider the
overlapping content of a compressed form. We have not been able to use this to prove
or disprove that the bounds of Theorem 7 are tight, but the concept of overlapping
content does lead to some interesting ideas. We digress and consider this in relation
to the CPM scheme.

Definition 8. The overlapping content of a pair of pointers q, and qj for pointer
size p is given by

{ ! if q, and qj donotstrictlyoverlap,
OVCON(q,, qj) -- if q, and qj strictly overlap by < p characters,

if q, and q~ strictly overlap by ~_g characters,

and the overlapping content of a compressed form t is given by

O V C O N (t) = Y. OVCON(q, ,q,) .
(qt,q)Et

THEOREM 8. For any string s,

IAo~M/L(S) I <-- IAcp~(S) I + OVCON(AcpM(s)).

PROOF. For a string s, given Acp~(s) (or any compressed form for s), all strict
overlapping can be removed to obtain a new compressed form t for s as follows:

while there ts a string uvw such that uv is the target o f some pointer q, and vw is the target o f some
pointer qj do

Replace q, by q~qv where

a u if lul-< e,
q~ ffi pointer to u otherwise,

..~v if Ivl<_p,
qv La pointer to v otherwise.

The reader can check that I t l -- I ACPM(S) I + O V C O N (A c P M (S)) •

We now describe how to convert t to a left pointer CPM compressed form for s
without increasing its size.

942 J. A. STORER AND T. G. SZYMANSKI

Sort the pointers in t topologically as q~ qn so that q,, 1 _< i ~ n, is not pointed to (directly or
indirectly) by any q, i < j <_ n. Since we are allowing substring overlapping, we assume that if q, points
to uvw and q~ points to v, then i _< j. Now, starting with ql, do the following to each pointer q,. If q, points
to the left, do nothing. Otherwise, ffq, points to a string w to its fight, swap q, with w and adjust all other
pointers accordingly; that is, all pointers that point to some substring of w must be changed to point to this
substring in the new position of w.

T h e key point in verifying tha t the above procedure works is tha t at the i th stage,
pointers ql th rough q,_l are not disturbed. []

Since OVCON(AcpM(S)) can be as large as O(I s 12), it is possible for T h e o r e m 8 to
yield very poor bounds. However , this is not a lways the case, as seen b y the fol lowing
example .

Example 1. A C P M compressed fo rm t has simple overlapping i f each po in te r in
t strictly over laps wi th at mos t one po in te r to its r ight and one to its left. Let
C P M / S O denote the C P M scheme restricted to s imple over lapping. A C P M / S O
compressed fo rm with n pointers has at mos t n - 1 strict overlaps. Thus, since the
construct ion o f T h e o r e m 8 preserves s imple over lapping, for all strings s,

I ACPM/L/SO(S) I --- I aO M/SO(S) I + OVCON(a M/SO(S))
< np + (n - 1)p
< 21ACPM/SO(S) [- []

We now turn our a t tent ion to the complex i ty o f op t imal ly compress ing strings
using the internal mac ro model . Unfor tuna te ly , like the E P M scheme, op t ima l
encoding for the C P M scheme appears to be intractable.

THEOREM 9. Given a string s and an integer K, it is NP-complete to determine
whether I acp~,(s) I <_ K even when any combination o f the restrictions to unidirectional
pointers, no recursion, and no overlapping is made. Furthermore, this is true regardless
of whether the pointer size p is part o f the problem input or is constrained to be a f i xed
integer greater than 1.

PROOF. First let us assume that over lapping is forbidden. In this case we can
use a construct ion similar to tha t used for T h e o r e m l(b) and (d). Let G = (V =
{v, v,,}, E = {el e,,}), K be an instance o f the node cover p r o b l e m and, as
in the p r o o f o f T h e o r e m 1, let $ be a special symbol , and let @ denote a new, distinct
symbol each t ime it occurs. Now, for e, = (b, vk) in E, let E, = Sv~-aSv~-~$, and let
s = IIT-a E , @ .

W e claim that G has a node cover o f size K i f and only i f [A(s) I -< [s] + K - m. I f
G has a node cover X o f size K, then for each node in X we can associate an E, in s
(which will not get factored), and for all r emain ing m - K E, 's we can replace exact ly
one string o f the fo rm $v:$ by a pointer. Thus [A(s) [_ I s I + K - m. T h e p r o o f o f the
converse is very similar to tha t used in T h e o r e m l(b) and (d), and we omi t the details.
As with T h e o r e m 1, the above construct ion works independen t ly o f whe the r recurs ion
is al lowed (since the largest factor has length p + 1). In addit ion, the left, right, or
unidirect ional pointer restrictions cause no p rob lem. Fo r example , i f we are restricted
to left pointers, we consider nodes in X one at a t ime and associate each with the
lef tmost "unassoc ia ted" E, conta ining it.

W h e n over lapping is allowed, we can use the same const ruct ion as above, except
that we let G, K be an instance o f the 1-node cover problem which is deffmed as:
G i v e n a g raph G and integer K, is there a set o f K or fewer edges in G such tha t every
edge in G is adjacent to at least one o f these edges? T h e 1-node cover p r o b l e m can
be shown to be NP-comple t e as follows. F o r G = (V = (v~ . . . v,,}, E =

Data Compression via Textual Substitution 943

{el . . . era}), K an instance of the node cover problem, construct the graph G' =
(V', E'), where It" is V together with the new nodes x~ and y,, 1 _< i = K, and E ' is E
together with the new edges (v,, xj) and (xj, y~), 1 _ i _< n and 1 _< j _< k. Then G has
a node cover of size K if and only if G' has a node cover of size K.

The only remaining case is the CPM scheme (with or without reeursion) with one
of the pointer direction restrictions. This requires a separate construction which
appears in [30] for the case p _ 5. []

The situation for the OPM scheme is much better. Although, at the time of the
writing of this paper, the status of the encoding complexity of the OPM scheme with
bidirectional pointers remains open, 15 we shall show that the unidirectional case can
be done in linear time. TM Lempel and Ziv in [12] (and also in [39]) have developed a
data compression algorithm that falls within the framework of our OPM scheme
restricted to left pointers and topological recursion. (As we shall see from the proof
of Theorem 11, a linear-time encoding algorithm for left pointers implies a linear-
time encoding algorithm for unidirectional pointers.) Rodeh et al. [24] have presented
a linear-time implementation of the Lempel-Ziv algorithm using the techniques of
[15]. 17 Their implementation can most simply be described as a one-pass greedy
algorithm. At each step the longest possible prefix of the remaining input that
matches some substring of the previously read input is removed from the input and
replaced with a pointer. For example, if we have already processed ababc and the
rest of the input is abcd, then we would output the pointer (3, 3) and delete the next
three characters of the input. The Lempel-Ziv algorithm is asymptotically optimal
for ergodic sources as the length of the source string tends to infinity; however, for
individual t'mite strings the compression achieved can be far from optimal.

THEOREIvi 10. Let LZ(s) denote the compressed form of s obtained by applying the
Lempel--Ziv algorithm. Then for any string s,

i f p = 1, then ILZ(s) I = Iao~,~/rn/,.(s) l,

P I AOPM/rR/t.(s) I <_ 1.
if p > l, then ~ <

2 p - 1 IZZ(s)l

Furthermore, for any real number h > 0 it is possible to construct a string s over a two-
symbol alphabet such that lao~/rR/n(s) l/la~z(s) I <-- (P + l)/2p + h.

PROOF. Without loss of generality we can assume that in any minimal-length
compressed form, any substring that is represented by a pointer to an earlier
occurrence is as long as possible; that is, if sm - . . s,, is represented by a pointer, then
sm . - . s,~+l is not a substring ofs l -. • sin-1. Otherwise we could obtain an equivalent
compressed form of the same or shorter length by changing the pointer to represent
Sm " " Sn+~ and then either deleting a character (if the pointer was originally followed
by a character) or changing the following pointer (if the pointer was originally
followed by another pointer).

Let s be any string, and consider t = AOeM/TR/L(S) and u = £t.z(s). Form the finest
partition of t and u into segments t -- t~ • . . tm and u = Ul • • • um such that for 1 _<

15 Recently, it has been shown by J. Gallant O n his Ph D. dissertation, "String Compression Algorithms,"
Princeton University) that this problem Is, in fact, NP-complete
18 Note that as wtth the CPM scheme, encoding for the OPM scheme with etther or both of the recursion
and overlapping restrictions (with unidirectional or bidirectional pointers) is NP-complete. A proof of this
may be found in [30]
17 In addition to ll5l, the interested reader should refer to [2, 11, 18, 22, 29, 36]. Also, a good introduction
to the above work is contained m [1]

944 J. A. STORER AND T. G. SZYMANSKI

FIGURE 1 t,: [.Xl I q' I X~ I q~ I X~ I "'"
u,: I r, I f ' I r2 I Y= I r;] . . .

j ~ m, t i and u i represent the same substring of s. In order to establish the bounds
quoted in this theorem, it is sufficient to show that

[tl[= lu l-- I,

~. < l t A < l for j > l .
2p 1 - l u , I -

By definition of the Lempel-Ziv algorithm, it is impossible for some tl to begin with
a pointer while uj begins with a character. We therefore have one of the following
c a s e s :

(1) 6 and uj both consist of a single character.
(2) t: and uj both consist of a single pointer (which represent identical strings by the

optimality principle stated at the beginning of the proof).
(3) tj begins with a character, and u: begins with a pointer.

In the first two cases, I = lull --- l, and their ratio falls within the desired bounds.
We must therefore establish the bounds for case (3). Let us write

tj =, x~qlx2q2 . . . xnq:n+~,
u~ =, rl y lrz y~ . . . r,, ym,

where each of the x,'s and y, 's is a string of zero or more characters and the q,'s and
r,'s are pointers.

A key observation is that any substring of s that is represented by characters (as
opposed to pointers) in either t~ or uj must be represented by a pointer in the other.
This is true because of our definition oft : and u~ in terms of a freest possible partition
of t and u. Figure 1 suggests the structure of that portion of s represented by tj and
u~. Notice that for each i, 1 _< i <_ n, q, represents at least the last character represented
by n, all of y , , and at least the first character represented by r~+~. Also, for 2 _< i __ m,
r, represents at least the last character represented by q,-x, all of x, , and at least the
first character represented by q,. To verify the above facts, depicted in Figure 1, it is
sufficient to observe that except at the end, if q, starts within r,, then q, must go
beyond the end of r,, since if q, ended earlier, then qi would not be as long as possible
(as we assumed at the start of the proof), and if qi ended at the same place, we would
not have the freest possible partition. Similarly, i f r, starts within a q,, then r, must go
beyond the end of q,, since to end earlier would imply a violation of the Lempel-Ziv
greedy rule, and to end in the same place would violate the freest partition.

Let us summarize some important observations about Figure 1:

(1) Either m = n or else m = n + 1.
(2) For 1 _ i _ n + 1, Ix, I < p, or else we could replace x, with a pointer to some

earlier occurrence in s, thus reducing the length of t by at least one in contradic-
tion to our definition of t as a compressed form of minimal length.

(3) For 1 _< i < m, I Y, I --- P - 1, or else the Lempel-Ziv algorithm would have used
a pointer instead of y,.

(4) lYml-<P.

A number of cases now arise.

Data Compress ion via Tex tua l Subst i tu t ion 945

Case 1. Suppose that n - m. Since 6 contains exact ly n pointers and at least one
character f rom xl, we have 16 [--- n1, + 1. Now consider uj, which also has exact ly n
pointers. Since each o f the y , (except possibly y,,) has no more than 1, - I characters,

l u, I -< n1, + (n - 1)(1, - 1) ÷ 1, = n(2p - 1) + 1.

Thus

It, l> n p + 1 p

lu, I - n (2 1 , - 1) + 1 - 21, - 1"

Case 2. Suppose that m = n + 1 and xn+l is the empty string. Thus both 6 and
u, end in a pointer. It is not hard to see that ym-1 must also be empty, or else the
Lempel -Z iv algori thm would have replaced the string represented by ym- lrm by a
single pointer. Thus u, contains exactly n + 1 pointers, [yk] - 1, - 1, for 1 _< k
_< n - 1, and [y,,[= [yn+l[= 0. Hence,

l u, I - - (n + 1)p + (n - 1)(,/7 - 1) = (21, - 1)n + 1.

o n c e again we have

161> n1, + 1 1,

lu, l - n(21, - I) + I - 21, - I"

Case 3. Suppose that m --- n + I and x~+1 is not empty. By our definition oft and
u in terms o f a fmest possible partition, it must be the case that y,,+t is the empty
string. Also, since the string represented by q~ extends at least (p + 1) - I xn÷l l
characters past yn, it must be that [y,, [< [x~+l [; otherwise, the presence o f q,, implies
that the Lempe l -Z iv algori thm must place a pointer directly after r,, (i.e.,]y,,[= 0).
Thus we have

161 > np + Ix~+ll + 1 > n1, + 1 > 1"

lu, I - n(21, - 1) + lYnl + I n(21, - l) + 1 - - 2t' - - 1"

In all o f the above cases we have shown that] t:] /] uj [--> 1,/(2p - 1). Since we are
using left pointers, it must be that 6 and u~ contain no pointers (and so I t~l -- lu l l) .
Thus Ill = l u l for p = 1, and I t l / l u l > p / (2 p - 1) for p > 1.

For any 1, > 1, using only a two-symbol alphabet, we can approach the lower
bound o f p / (2 p - 1) as follows. For k _ 0, let n -- (p + 1)2 k - 1 and

n - - p

s,,-~ ab"+lab n+l H (abn- 'ab~- ') •
t--O

It is easy to check that

I AoPM/~/L(S~)I _ (k + 2p + 1) + (n - 1,)(P + 1)

I ALz(s~)I (k + 21, + l) + (n - p)21,

= n (p + 1) + O(1,1og2(n))

n(21,) + O(plog2(n))

1 , + 1 - - - - ~ as n---~ oo.
21,

For p = 1,1,/(2p - 1) = (p + 1)/21, --- 1, and as p gets large, both quantit ies converge
to ½. Nevertheless, for 1, > 1,1,/(21, - 1) is strictly less than (1, + 1)/2/7, and so we are
left with a small "gap." At the t ime o f the writing o f this paper, this gap has not been
resolved. []

946 J. A. STOKER AND T. G. SZYMANSKI

Theorem 10 shows that as p gets large, the worst-case performance of the
Lempel-Ziv algorithm does not compare favorably with that of The next
theorem shows that if we compare the performance of the Lempel-Ziv algorithm
with that of the disparity becomes even greater.

THEOREM 11. For all strings and any pointer size p,

and the above pounds are tight.
PROOF. This is a direct consequence of Theorems 5 and 1 0 .
Although the Lempel-Ziv algorithm is not optimal for the OPM/L scheme even

when it is restricted to topological recursion, the next theorem shows that a linear-
time algorithm does exist for optimally compressing strings using the OPM scheme
restricted to unidirectional pointers of any size (independent of whether topological
recursion is used). In view of the number of NP-completeness results presented thus
far, this is a pleasing result, especially since the OPM scheme has many practical
applications.

THEOREM 12. For any string s, can be constructed in linear time (on a
RAM).

PROOF. Given a string s = s1 • • • sn, may be computed by performing
the following steps (note that SHORT[] and MATCH[] are arrays of strings):

The algorithm is a dynamic programming algorithm which utilizes the optimality
principle stated at the beginning of the proof of Theorem 10. Each string SHORT[i]
computed by the algorithm is the shortest compressed form for given that

is available as a "dictionary. " By using the appropriate data structures,
step A can be performed in linear time using a slight generalization of the algorithm
described in [23]. To perform step C in linear time, we note that the array
SHORT can be represented by storing at SHORT[i]si (or qi) followed by a pointer
to SHORT[i + 1] (or SHORT[i + |MATCH[i] |]). In step D we can easily write out
SHORT[1] in linear time by following the sequence of pointers through the array
SHORT. Hence the entire algorithm to compute runs in linear time.

To compute we can compute using the above algorithm on
the reverse of s and then

It should be noted that the Lempel-Ziv scheme uses the same decoding algorithm
as any other unidirectional OPM scheme, and so the decoding complexity of our
method is the same as that of Lempel-Ziv.

5. Internal Versus External Schemes
Although a number of bounds have already been given on the relative performance
of various pairs of compression methods, we have yet to compare the effectiveness of

Data Compression via Textual Substitution 947

the external schemes to the internal schemes. We shall now present a few results o f
this kind. In order to avoid trivial comparisons, we shall require that both schemes
under comparison allow recursion if either does (otherwise the relative performance
goes to zero). This will cause us to consider schemes that are not particularly natural
(internal schemes with nonoverlapping pointers, etc.). The purpose o f comparing,
say, the EPM scheme without recursion or overlapping to the CPM scheme without
recursion and overlapping is not to propose the CPM scheme without recursion and
overlapping as a useful scheme, but rather to give some insight with regards to the
relative performance of internal and external schemes. The first theorem of this
section considers schemes without restrictions.

THEOREM 13. For all strings s,

(a) -IAc. (s)I < Iac. ,(s) I + p,
(b) ½1 I < I AoE ' (S) I --< I I + P,

regardless of whether topological recursion is assumed. Furthermore, for any real
h > O, there are infinitely many strings over a two-symbol alphabet for which the bound
of ½ + h can be achieved for (b) and infinitely many strings over a K >_ 2 symbol
alphabet for which the bound of (2K - I) / (3K - 2) + h can be achieved for (a). TM

PROOF

(a) The proof of the second inequality is trivial since AcpM(s) may be used as the
~ In what follows, for external dictionary. Let us now demonstrate the bound o f ~.

strings uv and vw (v may be the null string), uv - vw denotes w and uv + vw denotes
v. For a string s, consider AEPM(S) = So#S1. Write So as So = 1-l,k-1 ri, where rl is the first
factor in so and r,, 2 _< i _< k, is r,_~ - z, where z is a substring of so satisfying the
following two conditions:

(1) z is a factor in So that either overlaps with r,-1 or starts directly after r,-~ O.e., z
is a factor in So and r,-~ - z is well defined).

(2) There is no other factor in So that satisfies condition 1 and extends further to the
right in s0 than z.

Since (by definition) A~a,M(s) is a minimal-length compressed form, the partition of
So as described above is well defined. Furthermore, by construction the following two
facts hold:

(1) The set {R,:r, is a compressed form for R,} is a set o f nonoveflapping substrings
ofs .

(2) Each factor in so is, for some i, a substring of the string ri, r,+~.

It is possible to construct a CPM compressed form t for s f rom & as follows:

All characters 0.e., nonpomters) in s~ are left intact. Find a pointer q in s~ with rl as its target, and replace
q by r~ For 2 < i _< k, fred a pointer q in s~ with a target z satisfying r, =, ri-1 - z, and replace q by q'r,,
where q' is a pointer to r,_~ + z. All other pointers q in s~ point to a substring of r,r,+l for some i and may
be replaced by two pointers in the obvious way.

It is possible that for some strings, the substitutions described above cause some
pointers to have targets of size p or smaller. I f this is the case, we can reduce the size
of t by deleting pointers of this kind and substituting in the targets. Similarly, it may
be possible to reduce the size o f t by fmding adjacent pairs o f pointers that we created
as described above and fmd a new target such that the pair o f pointers can be

is Note that tlus unplies that the bound of 2/3 is tight for unbounded size alphabets.

948 J. A. STOP-,.ER AND T. G. SZYMANSKI

replaced by a single pointer together with less than p characters. Since we are looking
for a worst-case ratio (which we show to be tight shortly), we can assume that it is
not possible to shorten t in the two ways described above. Having made this
assumption, it is not hard to show that for a worst-case ratio it must be that [So [-> pn ,

where n denotes the number of pointers in s~. Thus, if we let m denote the number
of characters in sl, we have

IA~pM(s) I > IA~,'M(s) I > p n + m + I sol
I A c p ~ (s) l - Itl - 2 p n + m + Is01

> p n + Isol > 2

- 2p,, + I~ol - 3"

A more careful analysis shows that the above inequality must be a strict inequality
(i .e . , >, not >).

We now show the bound of 2 to be tight. Let us first see how a bound of 3 may be
achieved with a two-symbol alphabet. For n a multiple of p let

alp
Sn = I I a~Obn-('-l)P"

i-1

Using the EPM scheme, s,, can be written as
n/p

a"b~ # 1I (n - ip + l, n + p) ,

and so it follows that [AEpM(S,,) [----- 3n. On the other hand, if we attempt to factor s~
using the CPM scheme, a shortest compressed form for s,, is

ql,,q~,~ anb p,

where ql,, denotes a pointer into a" and q2,, denotes a pointer into b n. Hence
[AcPM(S,~) [-- 4n + O(p), and a bound of] follows.

For a K ~ 2-symbol alphabet we can generalize the above construction by defining

Sn = I I a f a?+~ ~-'~p ,
~--1 J--1

and the bound of (2K - 0 / O K - 2) follows. In addition, if we let K = f (n) for any
unbounded function f , then the bound of ~ follows for an unbounded alphabet size.

(b) For a string s we can consider Ao~.eu(s) -- so#s~ and proceed in a fashion
analogous to the proof of part (a), the only difference being that this proof is a bit
simpler, since we cannot make any claims about Is01. This is because with original
pointers, pointers indicate the decompressed form of so, not So itself; thus So can be
very small compared to the number of pointers in sa. Hence, using the notation of
part (a),

p n 1 I A°~'PM(S) I > - -
u

IAopM(s) l 2p,, 2"

This bound may be shown tight (even for two-symbol alphabets), as follows. For
n > 0 let

n/p
sn = [I aWbn-"-x)P"

Using an external dictionary of a~b n, it is easy to see that [AoEPM(. . ,vn) [~--- n +
O (p log~(n)), regardless of whether topological recursion is used, whereas it is easy to

Data Compression via Textual Substitution 949

check that regardless of whether topological recursion is used. Thus
the bound of is approached arbitrarily closely as n gets large.

We now turn our attention to bounds concerning restricted schemes. In particular,
we consider overlapping and recursion restrictions.

THEOREM 14. Let denote an internal scheme (CPM or OPM) and an
external scheme (EPM or OEPM). Furthermore, if are used together,
then both refer to compressed pointer schemes or else both refer to original pointer
schemes. Then for all strings s,
(a) when recursion is forbidden.

(ft) when overlapping is forbidden or when both recursion
and overlapping are forbidden.

Furthermore, these bounds are tight.
PROOF
(a) When recursion is forbidden, compressed and original pointers are equivalent,

and so without loss of generality we consider the CPM scheme. The fact that is a
tight lower bound follows from a proof very similar to that of Theorem 13. We now
show that is a tight upper bound. It is not hard to show that we need only consider
strings s such that for some string r and integer k 1,

where ql denotes a pointer to some substring of r. Using r as the dictionary for the
EPM scheme, s can be factored using k + 1 pointers. Thus we have

The string a4p attains this bound.
(b) It is easy to see that 1 is a tight lower bound. Given = s0#s1, a

corresponding internal compressed form t for s may be formed by "hoisting up" s0
into s1 with the following algorithm (this works independently of whether topological
or nontopological recursion is present):

The (tight) bound of follows by an argument similar to that given in the proof of
part (a).

6. Conclusion
We have investigated various aspects of the macro model for performing data
compression by text substitution. Results have included NP-completeness theorems
on the complexity of finding the most compact encodings for several different macro
schemes, relative performance bounds on many pairs of schemes, and a linear-time
algorithm for performing optimum compressions for one of the more practical

950 J. A. STORER AND T. G. SZYMANSKI

schemes. All of the schemes we have presented have efficient linear-time decoding
algorithms, 19 and many restricted forms of these schemes have real-time decoding
algorithms that require only a small amount of random access memory. The same
decoding algorithm may be used independently of whether the compressed form is
of minimal length. Thus, NP-completeness results indicated in this paper should not
discourage further investigation of these schemes. It seems likely that fast and
effective approximation algorithms for compressing strings exist for many of the
macro schemes with NP-complete encoding complexities. In addition, a number of
further results that we have not discussed in this paper lead to polynomial-time
compression algorithms for various restricted forms of these problems.

ACKNOWLEDGMENTS. The authors are grateful to J. D. Ullman for helpful comments
and to J. Gallant for his critical reading of the paper and for providing a shorter
proof of Theorem 2 for the case p = 1.

REFERENCES
1. AHO, A. V., HOPCROFT, J. E, AND ULLMAN, J D. The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, Mass., 1974.
2. BOYER, R. S. A fast string searching algorithm Common. ACM 20, 10 (Oct. 1977), 762-772.
3. COOK, S. A The complexity of theorem proving procedures. Proc. 3rd Ann. ACM Symp. on Theory

of Computing, Shaker Heights, Ohio, 1971, pp. 151-158.
4. GALLANT, J., MAIER, D., AND STORER, J. A. On finding minimal length superstrings. J. Comput. Syst.

Sci. 20 (1980), 50-58.
5. GAREY, M. R., JOHNSON, D. S., AND STOCKMEYER, L. Some simplified NP-complete problems. Theor.

Comput. Sci. 1 (1976), 237-267.
6. HAGAMEN, W. D., LINDEN, D. J., LONG, H. S., AND WEBER, J. C. Encoding verbal information as

unique numbers. IBM Syst. J. 11 (1972), 278-315.
7. HAHN, B . A new technique for compression and storage of data. Commun. ACM 17, 8 (Aug. 1974),

434-436.
8. HUFFMAN, D. A. A method for the construction of minimum-redundancy codes, Proc. IRE 40 (1952),

1098-1101.
9. KARP, R. M. Reducibility among combinatorial problems. In Complexity of Computer Computations,

R. E. Miller and J. W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-103.
10. KNUTH, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed. Addison-

Wesley, Reading, Mass., 1973.
11. KNUTH, D. E, MORRIS, J. H., AND PRATT, V. R. Fast pattern matching in strings. SIAM J. Comput.

6, 1 (1977), 323-349.
12. LEMPEL, A., AND ZIV, J. On the complexity of finite sequences. IEEE Trans Inf. Theory IT 22, 1

(1976), 75-81.
13 LESK, M. E. Compressed text storage. Unpublished Tech. Memo., Bell Laboratories, Murray Hill,

N. J., 1970
14. MCCARTHY, J. P. Automatic file compression. In International Computing Symposium, North-Hol-

land, Amsterdam, 1973, pp. 511-516.
15 McCREIGHT, E. M. A space-economical suffix tree construction algorithm. J. ACM 23, 2 (Apr. 1976),

262-272.
16. MAIER, D. The complexity of some problems on subsequences and supersequences. Conf on

Theoretical Computer Science, University of Waterloo, Waterloo, Ont, Can., 1977, pp. 120-129
17. MAIER, D., AND STORER, J. A. A note on the complexity of the superstring problem, Proc 1978 Conf.

on Information Sciences and Systems, Baltimore, Md., 1978, pp. 52-60.
18. MAJSTER, M. E. Efficient on-line construction and correction of position trees. Tech. Rep. TR79-393,

Dep. of Computer Science, Cornell Univ., Ithaca, N. Y., 1979.
19 MARRON, B. A, AND DE MAINE, P. A. D. Automatic data compression. Commun. ACM 10, 11 (Nov.

1967), 711-715
20. MAYNE, A., AND JAMES, E. B. Information compression by factorizing common strings. Comput. J.

18, 2 (1975), 157-160
19 The decoding algorithms presented in Definitions 1-4 are used because they are simple to state, not
because they are the most efficient algorithms

Data Compression via Textual Substitution 951
21. MORRIS, R., AND THOMPSON, K. Webster's second on the head of a pin. Unpublished Tech, Memo.,

Bell Laboratories, Murray Hill, N. J., 1974.
22 PRATT, V. R. Improvements and applications for the Weiner repetition finder. Lecture notes, 3rd

revision, 1975.
23. RODEH, M, PRATT, V R., AND EVEN, S . A linear-time algorithm for finding repetitions and its

application to data compression, Tech Rep. No. 72, Dep of Computer Sci., Technicon, Israel, 1976.
24. RODEH, M., PRATT, V. R., AND EVEN, S. Linear algorithm for data compression via string matching.

J. ACM 28, 1 (Jan 1981), 16-24.
25 RUBIN, F . Experiments in text file compression. Commun. ACM 19, 11 (Nov. 1976), 617-623.
26 RUTH, S. S, AND KREUTZER, P. J. Data compression for large business files. Datamation 18, 9 (1972),

62-66
27. SEERY, J B., AND ZIV, J. A universal data compression algorithm. Description and preliminary

results. Unpublished Tech. Memo., Bell Laboratories, Murray Hill, N. J., 1977.
28. SEERY, J. B., AND ZIV, J. Further results on universal data compression. Unpublished Tech. Memo.,

Bell Laboratories, Murray Hill, N. J., 1978.
29. SEIFERAS, J. Subword trees. Lecture notes, 1977
30 STORER, J. A NP-completeness results concerning data compression. Tech. Rep. 234, Dep. of

Electrical Engineering and Computer Science, Princeton Univ., Princeton, N. J., 1977.
31 STORER, J. A. PLCC—A compiler-compiler for PL1 and PLC users. Tech. Rep. 236, Dep. of

Electrical Engineering and Computer Science, Princeton Univ., Princeton, N. J., 1977.
32. STORER, J. A. Data compression: Methods and complexity issues. Ph. D. Dissertation, Dep. of

Electrical Engineering and Computer Science, Princeton Univ, Princeton, N. J, 1978.
33. STORER, J. A., AND SZYMANSKI, T. G. The macro model for data compression. Proc. 10th Ann. ACM

Symp. on Theory of Computing, San Diego, Calif, 1978 (extended abstract).
34. VISVALINGAM, M. Indexing with coded deltas—A data compaction technique. Softw. Pract. Exper

6 (1976), 397-403.
35. WAGNER, R. A. Common phrases and minimum-space text storage, Commun. ACM 16, 3 (Mar.

1973), 148-152
36. WEINER, P Linear pattern matching algorithms. Proc. 14th Annual IEEE Symp. on Switching and

Automata. Theory, Ames, Iowa, 1973, pp. 1-11.
37. ZIV, J. Coding theorems for individual sequences IEEE Trams. Inf. Theory IT 24, 4 (1978) 405-412.
38. ZIV, J, AND LEMPEL, A. A universal algorithm for sequential data compression. IEEE Trans Inf.

Theory IT 23, 3 (1977), 337-343.
39. ZIV, J, AND LEMPEL, A. Compression of individual sequences via variable-rate coding. IEEE Trans.

Inf. Theory IT 24, 5 (1978), 530-536.

RECEIVED JULY 1979, REVISED JUNE 1980, ACCEPTED JUNE 1981

Journal of the Association for Computing Machinery, Vol 29, No 4, October 1982

