Data Compresson via Textual Subgitution

JAMES A. STORER AND THOMAS G. SZYMANXKI

Princeton University, Princeton, New Jersey

Abgtract. A general modd for data compresson which indudes mog data compresson sygems in the
literature as gedial casess is presented. Macro schemes are basad on the principle of finding redundant
gringsor patternsand replacing them by pointersto a common copy. Different varieties of macro schemes
ma; be defined by specifying the meaning of a pointer; that is a pointer may indicate a subgring of the
compressad dring, a subgring of the original gring, or a subgtring of someother string such as an external
dictionary. Other varieties of macro schemes may be defined by regtricting the type of overlapping or
recurson that may be used. Trade-offs between different varieties of macro schemes, exact lower bounds
on the amount of compresson obtainable, and the complexity of encoding and decoding are discussed, as
well ashow thework of other authorsredates to this modd.

Categories and Subject Destriptors E 4 [Data): Coding and Information Theory—data compaction and
compression; F. 1. 3 [Computation by Abgtract Deviced: Complexity Classes—reducibility and completeness
F.2.2[Analysisof Algorithmsand Problem Complexity]: Nonnumerical Algorithmsand Problems—pattern
matching.

General Teems Algorithms, Theory
Additional Key Words and Phrasss Textual subgtitution, macro expangion, dictionary, NP-completeness

1 Introduction

On-line secondary dorage pace is one of the mogt redtricting resources in many
modern computer ingtalations, particularly in those employing multiuser time-shar-
ing sysems. Fadt dgorithms for compressing and restoring data files can do much to
dleviatethis problem. Some of the more popular data.compression schemes described
in the literature include statistical encoding techniques such as Huffman codes [§],
which typicdly encode a block of source data as a variable-length string of bits
determined by various datigica properties of the source data; incremental encoding
methods (e.g, [21, 34]), which typicdly compress a file by recording only the
difference between successve records and textual subgtitution or macro encoding
schemes (e g, [6, 7, 12-14, 19, 20, 25-28, 30, 31, 33, 35, 37-39)), which factor out
duplicate occurrences of data, replacing the repeated dements with some sort of
oecid marker identifying the data to be replaced at that point. In addition, many
ad-hoc methods for handling data with certain known characterigtics appear in the
literature.

This research was supported in part by the National Sdence Foundation under Grant MCS 74-21939 and
in part by Bdll Laboratories

Authors presnt addresses J. A. Storer, Department of Computer Science, BrandeisUniver sity, Waltham.
MA 022%4; T. G, SzymansKi, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
Permission to copy without fee all or part of this material is granted provided that the copies are not made
or digributed for direct commercial advantage, the ACM copyright natice and the title of the publication
and its date appear, and notice is given that copying is by permisson of the Association for Computing
Machinery. To copy otherwisg, or to republish, requires a fee and/or ecific permisson.

© 1982 ACM 0004-5411/82/1000-0928 $00. 75

Journal of e Association for Computing Machinery, Vol. 19, No 4, October 1982, pp. 928961

Data Compression via Textual Substitution 929

This paper is devoted exclusvely to the properties of the macro modd for data
compresson. We study two magjor types of macro schemes, the types being differ-
entiated by the location where the factored-out text is stored. Section 2 contains a
discussion of our model dong with some basic definitions, Sections 3 and 4 present
our results for the two major types of schemes consdered, and Section 5 examines
the relative performance of the various compresson schemes introduced in the
preceding sections. To reduce the sze of this paper, NP-completeness results are
presented in [30]. However, the more important results of [30] are summarized here.

Before proceeding to the next section, we define the following notation:

(1) If sand s denote strings and n = 1 is an integer, $;S, denotes the concatenation
of s; withs,, [[i-1s denotes sis, *+ * s, and ' denotes [S, < denotes the
empty string.

(@ We use theterm collection to mean multiset.

(3 Ifsisasdtring, |s| denotes the length of s, and if sis a collection, |s| denotes the
number of elements in s (with each eement being counted as many times as it
appearsins).

(4 We extend the min function to strings by defining

min{s, 5} = {

51 if |s|=lsl
52 otherwise.

(5) For ared numberA, [k] denotes the least integer greater than or equal to h.

2. The Model and Basic Definitions

We shdl treat the source data as a finite string over some aphabet. With external
macro schemes, a source string is encoded as a pair of strings, a dictionary and a
skeleton. The skeleton contains characters of the input aphabet interspersed with
pointers to substrings of the dictionary. The dictionary is aso dlowed to contain
pointers to substrings of the dictionary. The source string is recovered by substituting
dictionary grings for pointers. With internal macro schemes, a string is compressed
by replacing duplicate instances of substrings with pointers to other occurrences of
the same substrings. The result is asingle string of characters and pointers.

Throughout this paper let p = 1 denote the implementation-dependent sze of a
pointer? If x is a string containing pointers, the length of x, denoted | x|, is defined
to be the number of characters in x plusp times the number of pointers in x. We
shdl treat a pointer as an indivisible object which, in some unspecified fashion,
uniquely and unambiguoudly identifies some string which is referred to asthe target
of that pointer. The way a pointer is written is not important; the only assumption
we make is that it is aways possble to determine by ingpection of a pointer the
length of its target.® For smplicity we shall write a pointer asa pair (n, m), where n
indicates the position of the first character in the target, * mindicates the length of the
target, and | (n, m) | isthe pointer Sze p. Without loss of generdity it will always be
assumed that m > p.

! A multiset is a st in which repetitions are dlowed. For example {a, a, b} isamultiset.

2\We assume that dl pointers within a given string have a uniform size. (Variable-length pointers are

congidered in [30]) We aso assume p to be an integer, athough our results generalize to nontntegral
ointer sizes

?It is not always necessary to make this assumption and, in fact, it can be useful to removeit See[3(for

a discusson of this.

4 n can be either an absolute location or a displacement. For example, with internal schemes, n could be

the distance from the pointer to its target.

B0 J A. STORER AND T. G. SZYMANSKI

Asanexampleof theseidess let p = 1, and consder the string
w=aaBccDaacEaccFacac,
which might be encoded under the external macro modd as
X = aaccH(1, 2)B(3, 2)D(1, E(2, F(2, 2)(2, 2),

where # separates the dictionary from the skeleton. For convenience, we assume
|#| = 0. Thecompression achieved by thestringx (i.e, theratio |xJ|w]) is */1s. Using
the internal macro mode, w could be encoded as

y = aaBceD(1, 2)cEa(4, 2)Fac(13, 2),

achievingacompressonof™/ys.

Implementation consderations motivate us to describe a number of variaions on
our basc modes A schemeisrecursiveif amacro body (i.e, a sring that is atarget
of apointer) isalowed to itsdf contain pointers. Two pointers overlap if their targets
overlap. Whether overlapping pointers are permitted in the external modd depends
highly on the implementation chosen for the dictionary. > An original pointer is one
which denotes a subgtring of the origina source string, whereas a compressedpointer
denctes a subgiring of the compressed representation itsdf. The string y of the
previous example contains compressed pointers. Using origina pointers, we could
encode w as

z = aaBceD(1, 2)cEa(4, 2)F(8, 2)@, 2),

achieving a compression of /1. Origina pointers are more natural for one-pass

decoding. Compressed pointers dlow the recovery of portions of the source string
without requiring the implicit decompression of the entire string. A Ieft (right) pointer
is one which denotes a substring occurring earlier (later) in the string. Consdering
the strings X, y, and z presented above, only x uses overlgpping pointers, only zuses
recurson, and none of these strings use right pointers. By using both left and right
pointersit is possble to save additiona soace over the use of just one direction. For

example, using both right and left pointers, the compressed formsy and z presented

above could be replaced by

y = (5, 2)B(10, 2)DaacEaccF(6, 2)(6, 2),
z = (7,2)B(12, 2)DaacE(8, 2)cF(8, 2)(8, 2),

achievingacompressionof Y/, and™/, respectively. Wediscussrecursioninrdationto
origind pointers primarily to study the "power" of various methods. With origina
pointers, a pointer is recursve if al or part of the string it represents is represented
by apointer.

Cydes cannot occur in compressed forms with compressed pointers, but using
origind pointers, cyces can often make sense For example, the compressed form
ab(5, 2)a(1, 3) uniquely determines the paindrome abaaaaba even though the two
pointersin this compressad form comprise acyce. Here the pointers (5, 2) and (1, 3)
are acydein the sense that each points to aportion of the string represented by the
other. An example of a degenerate cyde is given by the compressed form a(1, n),
which uniquely determines the string a™*. Schemes which alow recursion but not
cydes are sad to have topological recursion. From the above discusson it should be
clear that topologica recursion is not necessary for a compressad form to be uniquely

® Certain implementation considerations can leed to the placement of various restrictions on the kinds of
overlapping permitted. Some of these restrictions are described in [30, 32].

Data Compression via Textual Substitution 931

decodable. However, it can be useful to consder topologica recurson for three
reasons. Firet, authors in the pagt (such as Lempd and Ziv) have assumed this.
Second, study of such schemes leads to a deeper understanding of the power of
origind pointers. Third, topologicd recurson may mode some practica consdera-
tions in the design of efficient origina pointer compresson methods.

The above discussion leeds us to formally define four besc macro schemes and
three types of restrictions which may be placed on any of these schemes. Throughout
this paper, Z denotes the underlying aphabet from which the data in question is
congtructed.

Definition L A compressedform of a string s using the EPM (external pointer
macro) scheme is any string t = so#fs; satisfying®

(1) s and s; condst of charactersfrom X and pointers to substrings of .
(2) scan be obtained from s; by performing the following two seps.

(@ Replace each pointer ins; with its target.
(b) Repest step A until s; contains no pointers.

Definition 2. A compressed form of a dring s using the CPM (compressed pointer
macro) schemeis any gtring t satisfying

(D t congds of charactersfrom X and pointers to substrings of t,
() scan be obtained from t by forming the string t#t and then decoding as with the
EPM stheme.

Definition 3. A compressedform of a string s using the OPM (original pointer
macro) schemeis any string t satisfying

(D tcongdsof charactersfrom X and pointers representing substrings of s.

(2) scan be obtained from t by replacing each pointer (n, m) by the sequence of
pointers (n, 1), (n+ 1, 1),..., (h+ m— 1, 1) and then decoding as with the
CPM scheme, with the stipulation that pointers are conddered to havelength 1,

Definition 4. A compressedform of a string s using the OEPM (original external
pointer macro) scheme is any string t = Se#s; satisfying

(1) t condggs of charactersfrom X and pointers.

(2) sy may be decoded using the OPM scheme to produce a string r. Furthermore,
pointersin s, point to substringsof r.

(3) smay be obtained by replacing each pointer in s; with itstargetinr.

A contraction of a gtring s for pointer Sze p according to a given scheme is a
shortest compressed form of susing that scheme with pointer Sze p. A contraction of
astring swill be denoted by A(9).” We shall refer to the process of replacing a string
r by a pointer asfactoring out r and often refer to a string that is a target or potentia
target as afactor.

Definition 5. A CPM (OPM) pointer g; depends on pointer g, if the target of g,
contains . (al or part of the string represented by @) or if there is a pointer gs such
that q; depends on gz and gz depends on .. A macro scheme is redricted to no
recursion if dependent pointers are forbidden, and to topological recursion if no

® For convenience we assume throughout this paper that | = 0.
"A string may have more than one minimal-length compressed form. For formal discussions we can
adwaysensure that A(S) is unique by assuming alexicographic ordering.

932 J A. STORER AND T. G. SZYMANSKI

pointer may depend on itsdlf; that is, it must be possible to sort topologically® the
pointers of a compressed form according to their dependencies.

Definition 6. Two pointers overlap if their targets overlap and strictly overlap if
their targets overlap but neither target is asubstring of the other. A macro schemeis
regtricted to no overlapping if overlgpping pointers are forbidden.

Definition 7. A CPM (OPM) pointer gpoints to the left if the leftmost character
of its target is to the left of g (the leftmost character of the string represented by q).
A right pointer is amilarly defined. A macro scheme is redtricted to unidirectional
pointersifail pointers must point in the same direction (of course, with the EPM and
OEPM schemes, this only gpplies to the externa dictionary). As a specid case of
this, we can restrict a macro scheme to have only left or right pointers.

The different combinations of the four basc macro schemes we have defined and
the recurson, overlapping, and pointer direction restrictions provide us with alarge
number of data compresson methods. The combinations are sufficiently genera to
cover virtuadly dl of the text subgtitution schemes proposed in the literature.
Discussion of the utility and appropriateness of various restrictions to the models are
deferred until later in the paper.

We have not discussed the concept of adding to pointers arguments which dlow
the specification of modifications to be made on a factor before it is substituted.
Macro schemes with arguments generdly have more power than ones without. Also,
afew data compresson methods presented in the literature require a macro scheme
with arguments to mode them, for example, the subsequence and supersequence
compresson methods discussed in [16]. Macro schemes with arguments will not be
discussed in this paper, but it it should be noted that the macro model can be
extended to alow this generdity.

3. The External Macro Model

The externa macro model views the collection of macro bodies as resding outside
the remainder of the compressed string. This makes external schemes ideal for
compressing collections of strings usng a common dictionary. There are severd
reasons why it is more natural to treat dl pointers as compressed pointers when
discussing thismodd. First, authorsin the past have used the EPM scheme and not
the OEPM scheme (the authors mentioned in the introduction who used externa
schemes dl considered variants of the EPM scheme). Second, it dlows us to
decompress arbitrary portions of the data without first having to produce the entire
gring. Third, compressed pointers often require less space than origina pointers. For
these reasons, we concentrate our attention in this section on the EPM modd and
then indicate how our results can be extended to the OEPM modd. Aswe shdl see
in the next section, there are advantages to using origina pointers over compressed
pointers that justify consideration of the OEPM mode. In many cases the extension
of results to the OEPM scheme istrivial, since if recurson is forbidden, origina and
compressed pointers become equivaent in power. Similarly, if overlapping is forbid-
den, unidirectional and bidirectiona pointers become equivaent.

THEOREM 1 Forall stringss, ifonly topological recursion isallowed, then (assuming
siscompressible) both Bepy(S) | and |Aoepu(S) | are

(@ =p logx(|sl/p)+1.9p.
8 For adiscussion of topological sorting, see [10].

Data Compression via Textual Substitution 933

(b) =3p logs(|s1/p)- 0.02p when overlapping is forbidden.

(c) =2(p|s})*® when recursion isforbidden.

(d)=2(p|s|)'* when both recursion and overlapping areforbidden.
(e) (@)—(d)yhold even ipointers are required to be unidirectional.

|f nontapological recursion is allowed, then
() The bounds of (a)-(e)reld for the EPM scheme.
But

(g)iAoerm(s)| =2 2p + 1, independently of what overlapping and pointer direction
restrictions are made.

Furthermore, all ofthe boundsin (a)-(g) are tight; that is, each is arsaimedfor infinitely
many strings s.?

PROOF. For (a)-(e), Snce | Aoepm(s)| = | Arem(s)}, it issUfficient to show that the
OEPM scheme satidfies these bounds and the EPM scheme can attain them infinitely
often.

Fird let us consider (a). We can assume that s = a'*! (forsome ain Z) because

| Aoeem(a’h)| < |Aceem(s) |. It iseasy to show that for some p < k= 2pandn,

Aoepu(s) = a* [q#gner,
-]

whereg..1 =i < n, points to the string represented by everything to the leftof it and
gn+1 POINtS to some substring of length \s\ in the dictionary. Since ¢ points to a
gring of & characters, we must have k > p, or de a shorter contraction of s could be
produced. Similarly, ifk > 1p, we could produce ashorter contraction by representing

a* by a**~1 followed by a pointer to this string. Thus we have

IAOEPM(S)I =2k+ np +p
= plog(lsl|/k)+k+p
= min{ p[loga(|s|/i) +i + p:p <i=2p}
= p logo(|s|/p) + min{ p(1 + h — logeh):1 < h =< 2)
> p logz(}s}/p) + 1.9p.

For any p < i = 2p and n, the bound min{ p{log:(|s|/i}{ + | + p:p < i = 2p}is
achieved exactly by the EPM scheme on the string s = a**

We now congder (b). Again we can assume that s = a'!. Since overlapping is
forbidden, the pointers of Aorrm(s) Can be divided into a sequence of SHS Sy, ..., Sm
such that the pointersin 8., 1 <i < m, have targets whose compressad representation
condds of pointers in some s,,j < i; in fact, Snce we are concerned only with wordst-
case performance,'® we can assume that j = i — 1.We can dso assumethat 8,1 =i
=< m, contains at mogt three pointers. Thisis becausefor any k =4 there arean iand
Jjsuchthat 2i + 3j= &k = 23/, and 0 we can replace a st 5, of four or more pointers
by a sequence of sets having a most three pointers, where the last st inthe sequence
will represent a string at least as long asthat represented by the origina sequence of
four or more. Hence, for some x = 2 we can assume that for dl i > x, S contains

® Acwaatly, the bound in (a) 1sjust an gpproximation for the expression min{ p|logs(|s|/i)|+ 1 + p:p <i
= 2p}, which is attained exactly infinitely often Smilarly, the bound i (b) sjust an approximationfor
theexpressionmin{3p | logs(|S | /i} | +/:2p <1 = 4p), which s attained exactdy for infinitely many srings
* Jt 18 not necessary to condider a compressed form of length x for a string &” ifthere is a compressed form
of length <x (=X) for adring a* where2 2 y (z = y).

934 J. A. STORER AND T. G. SZYMANSKI

exactly three pointers. This is because we can assume that the sets of two come first
and a sequence of three two-pointer sets can be replaced by two three-pointer sets.
Given this, it can be assumed that for some2p< k = 4p, 0 =M <=L =1 andn,
Aoepm(s) is of the form

a“(q%)L(‘ﬁ)"’(I"I2 q?)#qﬁﬂa

where g, pointsto a*; ¢, points to ¢3; g- points to a*, 43, or g3, depending on the
valuesof L and M; and for 3 = i = n + 1, ¢, points to g2, . Thuswe have

IAOEpm(S)’ =k+ 3"}7 + ZLP + ZMP
= 3p[logs(|s|/k2°2™)) + k + 2Lp + 2Mp
= 3pllogs(|s|/k)1 + k + 3p(k — logs2)(L + M)
= 3p[logs(|s|/K)] + &
= min{3p[logs(|s|/i)) + i:2p < i =< 4p)
= 3p loga(| s1/p) + min{ p(h ~ 3 logsh):2 < h = 4}
> 3p loga(| s)/p) ~ 0.02p.

Forany 2p<i =4pandn> 1, the bound of min{ 3p|logs(|sli)| + i:2p < i =4p}
is achieved using the EPM scheme with no overlapping on the strings = a #".

The proofs for (c) and (d) appear in [30]. All of the proofs of (a)-(d) make use of
left pointers only, and so (€) follows, (f) followstrivialy because compressed pointers
cannot form cydes, and hence with the EPM scheme dl recursion must be topological.
For (g) wemay again assumethat s = a!*! for someain Z. If sis compressible using
the EOPM scheme, then s must contain at least two pointers and & least one
character. Hence 2p + 1isalower bound. Itisdsotight, Sncea(l, |s| — D#(1, |s])
isacompressedformfors= 4'*. 0O

For topologicd recurson, Theorem 1 saysjust what one would expect; thereis an
(p log| s|) lower bound on the Sze of a compressed string when recursion is alowed
(log, with overlapping and logs without) and an 2((z] s|)** lower bound when
recursion is not alowed. For nontopologica recurson the bound of (g) may seem
unnatura. Clearly we cannot represent a string of arbitrary length using a constant
amount of space. The bound of (g) smply illustrates the need for the pointer Sze to
be afunction of the string Sze to modd situations where pointers may indicate strings
of arbitrary length.

It should dso be pointed out that the bounds of Theorem 1 apply primarily to
"pathologicd” gtrings; in practice, reducing the size of a file by a smal congant
factor may be very significant. However, much of the utility of Theorem 1 comes
from the fact that it provides exact bounds which are needed in severa of our NP-
convpleteness™ proofs.

The next theorem congiders encoding agorithms for the EPM modd. Wagner [35]
presents a polynomid-time agorithm for compressng a string, assuming that the
dictionary of macro bodiesis given asinput to the encoding dgorithm. However, no
mention is made as to how the sdection of the best possble dictionary is accom-
plished. Severd heuristic methods for congtructing dictionaries have been presented
in [20] and [25]. Neither of these guarantees optimal compression or even provides
bounds on the compression that is obtainable. The reason for thisgap intheliterature
is the NP-completeness of finding Agpm(s).

™ For a definition of NP-completeness and related terms, see [1]. All of our proofs show NP-completeness
in the sense of Karp [9 (which implies that of [J)).

Data Compression via Textual Substitution 935

THEOREM 2. Given a siring s and an integer K, it is NP-complete to determine
whether | Appm(s)| = K in any of the following situations:

(a) both recursion and overlapping allowed,
(b) recursion allowed, overlapping forbiddern;
(¢c) recursion forbidden, overlapping allowed,
(d) both recursion and overlapping forbidden;
(€) unidirectional pointers and any of (a)-(d).

Furthermore, the above are true regardless of whether p is part of the problem input or
is constrained to be a fixed integer greater than 1. In fact, we show (b) and (d) to be
true even if p = 1.

Proor. It should be clear that no one part of the theorem directly implies any
other. Thus several reductions are used. The reductions employed include the node
cover problem [9), the restricted node cover problem [17], the K-node cover problem
[30], and the superstring problem [4, 17]. As mentioned in the introduction, proofs of
all NP-completeness results appear in [30]. However, we shall include the proof of
(b) and (d) as a “sample proof.”

Proof of B)and (d)forp>1. LetG= (V= (v, ..., wm}, E={e,,...,em}), K
be an instance of the node cover problem, and let p = py. Let $ be a special symbol,
and let @ denote a new, distinct symbol each time it occurs. For v, in ¥, let ¥, =
$v27'$, and for ¢, = (v, v¢) in E, let E, = $v{ '$v4'5. Now let

P n m

o= (fi 1 ve)(fi ze)
=1 y=1 =1

We claim that G has a node cover of size <K if and only if |A(s)| = |s| + K ~ m.

First suppose that G has a node cover X C ¥ of size K. We shall construct a
compressed form ¢ for s (having length |s] + K — m), where ¢ is’of the form
so#([18=1 T10=1 ¥, @)([[71 E. @), where 5, contains those ¥, for which v, is in X, and
V,is ¥, if v; is not in X and a pointer to v, in s if v, is in X. If E, is $v7'$v47'8,
then E, is either rv4'$ or $v7~'g, where r is a pointer to v, in s and ¢ is
a pointer to vx in so. Since X is a node cover, this can always be done. If we now com-
pute the length of 7 [s]| = K(p +), |TE-: [~ 7, @| = {[B- [I4 V, @] — pK,
and |[[% E@| = |[[%1 E.@] — m. Hence |A(s)| s |¢| = |s| + K(p+ 1) = pK — m
=[s| + K — m, as was to be shown.

Conversely, suppose that |A(s)| < |s| + K — m. We shall show that G has a
node cover of size at most K. First observe that since overlapping of pointer
targets is forbidden, no pointer in A(s) can refer, for any strings x and y, 0 a string
of the form xv$v,y, x@yp, or x@y, since such a string can occur at most once
in s and no gain can be achieved by factoring it out. Thus A(s) is of the form
so#{[[e=: TIr=2 V, @XIT%: E. @), where so is a dictionary of macro bodies and the
7;s and E’s are the shortest compressed forms of the F7's and Es, respectively,
using so. As mentioned eatlier, without loss of generality we are assuming throughout
this paper that every pointer references a string of length at least p + 1. Thus, since
| V.| =p + 1, we can infer that each V. is either V, itself or a pointer to an occurrence
of v, in so. Similarly, since | E,| = 2p + 1, each E, must either consist of E, itself or else
be a string of the form rv ‘,""1$ or $vf'1r, where r is a pointer to some F; in so. Now let
L be the nember of E’s such that E, = E,, that is, the number of £’s that have not
had a factor removed. Then |[[2; E@| = [[i%1 E.@]| — (m — L), since removing a
factor from an E, saves one character. Let J be the number of F7’s in 5. Then

936 J. A. STORER AND T. G. SZYMANSKI

|sol=J(p+1) and|TE: 1 7@ = [T+ [¥, @] - Jp, becauseeach v, thet
IS replaced by a pointer saves one character. Thus |ag)| J(p + 1) +|s|—Jp—
(m-L) = |g+J+L-mand J + L =K. Wenow dam that G has anode
cover of sze J + L formed by taking the J nodes represented in s and one node
from each of the L edges not factored in A¢s). Therefore G has a node cover of Sze
K, aswasto be shown.

Proof of (b) and (d) for p = 1. The following proof is smilar to the origind proof
of thisresult [30] in that it employs a reduction to the node cover problem for degree
three graphs. However, athough the actual the actua congtruction is dightly longer,
the proof of its correctness issmpler. This smplified proof is due to J. Gallant.

LeeG=(V={vy,...,n),E=(ey,..., e"]];(), K be an ingance of the node cover
problem for which dl nodes have degree 3. Asin the proof forp> 1, lee $ bea
gpecid symbol, and let @ denote anew, distinct symbol each time it occurs. For v;
inV let

Vi = v ad VV|:$2Vi$2,
andforg = (v, v)inElet
E=V s

Now let
s= (;_1 (V:@M@)’)Cﬂl E@).

The dam isthat G has a node cover of Sze K if and only if JA(s)| <|s| + K- 14n.
The first haf of the proof argues that if Xis a minimal node cover for G, then a
compressad form for s can be constructed as follows

(1) The two copies of each V, go to acopy of V; in the dictionary and two pointers
in the skeleton.

(2 The two copies of each W, go to two copies of $ followed by a pointer to V;
followed by a $ in the skdeton if v, is not in X; otherwise the two copies of W,
goto W in thedictionary and two pointersin the skeleton.

(3 Each E; representing 6= (v, Vi) goes to apointer to v followed by a pointer
to v followed by $ if v; is chosen to cover the othewise E; goesto $
followed by apointer to $v;$ followed by a pointer to :

A compressed form for s as congructed above saves one character for each pair of
Visfor atota of n: four characters for each pair of W\swhen v, is not in X, three
characters for each pair of W;s when v, is in X for a total of 4n - K, and sx
characters for each E; for atotal of 6m. Snce m = 2n, thisyidds |a®)| = |9 -
n-4n+ K-6m= |s|+ K-14n.

The other haf of the proof requires more work. Here it roust be argued that the
method of compressing s as described above is the best possble. This is done by
congdering severd cases that rest heavily on the fact that dl nodes in G have degree
3. The degree-3 restriction makes it unprofitableto factor out many strings that might
otherwise be factored if nodes with large degrees were present. We leave the details
of this hdf of the proof to the reader. Note that the above reduction is for the case
where recursion is forbidden. If recursgon is dlowed, the same congtruction may be
used, except that one copy of W should be used ingtead of two. O

2 Using a result from [5), it is easy to show this restriction of the node cover problem to be NP-complete;
== [17].

Data Compression via Textual Substitution 937

In [30], cases (b)-(e) of Theorem 2 are shown to hold tor the EOPM stheme. Case
(8 isshown for the problem of compressing collections, but the Sngle string problem
remains open at the time of the writing of this paper. In addition, in [3]] it is
conjectured that dl of (8)-(€) of Theorem 2 can be shownfor p = 1

Throughout this paper we assume that the aphabets over which strings are written
are unbounded in size. However, results concerning lower bounds on encoding
complexity are stronger if they apply to the case where dl grings are assumed to be
written over some fixed sze aphabet, and, although unbounded size aphabets mode
many practical Stuations (such as when entriesin asystem dictionary aretaken to be
the basic characters), there are certainly many situations in which it is more realistic
to congder strings to be written over some fixed finite aphabet. Thusit isworthwhile
to consider the complexity of compressing strings when it is assumed that al strings
are written over a fixed sze aphabet. Since our motivation for doing thisisto mode
practical situations, when discussing fixed sze a phabets we aso require that pointers
of a given size can only encode a finite amount of information. This requirement is
met by stipulating that the pointer Sze p be dependent on the string being processed.
Because complexity results concerning fixed Sze aphabets are more technicd, we
shdl only state a few sample theorems to indicate the flavor of these results and only
for the case when both recursion and overlapping are forbidden. Suppose we dlow
pointers to be able to indicate any substring of the source. Then a pointer's length
must be some implementation-dependent multiple of the logarithm of the string
length.

THEOREM 3. Ifrecursion and overlapping areforbidden, then, giving a string s over
any alphabet with at least three symbols, an integer K, and a real h > 0O, it is NP-
complete to determine whether s has an EPM compressedform t satisfying |t| =K
when thepointer sizeis [4 logs|¢]].

Two other natural ways to determine pointer size are either to require that the
information content of a pointer be sufficient to distinguish al the pointers in an
encoding or to require that a pointer be able to identify any substring of the
dictionary. To this end, if t is an encoding of some string using the EPM scheme,
let 8(n be the number of diginct pointers in t, and let d(t) be the dictionary
portion of t.

THEOREM 4. Ifrecursion and overlapping areforbidden, then, given a string s over
any alphabet with at least three symbols, an integer K, and areal h =2 1 it is NP-
complete to determine whether s has an EPM compressedform t satisfying |t|< K in
thefollowing situations:

(@ pis{h log:d(n1.
(b) pis A logal d()}1.

In[30], resultssimilar to the above are shown for other combinations of restrictions.
Although Theorems 3 and 4 apply only for aphabets of sze 3 or greater, we
conjecture that these results can be strengthened to apply for two-symbol alphabets.

The proofs of the last two theorems involve an extra level of complexity over the
corresponding proofs for the unbounded a phabet cases, because when one attempts
to embed, say, an NP-completegraph problem in adatacompression problem, one
is forced to encode nodes of the graph as strings. Care must be taken to ensure that
the integrity of these strings is maintained during compression.

Aswas indicated a the start of this section, external macro schemes are useful for
compressing collections of gtrings. Many of the NP-completeness results of this

938 1. A, STORER AND T. G. SZYMANSKI

section can be strengthened when applied to collections. For example, some results
concerning bounded-size alphabets, when extended to collections, apply for two-
symbol alphabets. Storer [30] also contains results concerning limitations on the size
of strings in a collection and factors in compressed forms.

4. The Internal Macro Model

In the internal macro model it is rather unnatural to forbid the use of recursion or
overlapping, We shall therefore concentrate on the four combinations provided by
choosing between compressed and original pointers and choosing between unidirec-
tional and bidirectional pointers. In addition, we consider the topological recursion
restriction, not because we are necessarily claiming it to be a natural restriction for
the OPM scheme, but because studying topological recursion appears to lend insight
into the relative power of compressed and original pointers. As done in the last
section, we first start with some performance bounds.

THEOREM 5. For all strings s (assuming s is compressible),

@ |doru(| = p+1;
(b) for topological recursion,® both |Acru(s)| and |Borm(s)| are =plog(|s|/p)
+ 0.9p.

Furthermore, the above bounds are tight'* and hold regardless of whether unidirectional
or bidirectional pointers are used.

PrOOF. Similar to that of Theorem 1. O

The next theorem deals with the relative power of compressed and original
pointers,

THEOREM 6. For any string s, |Boru(s)| <= |Acem(s)|, independently of what
restrictions are made { provided the same restrictions are used for both). Furthermore,
Jor any real h > 0.

(@) Using any alphabet of size =1, there are infinitely many strings s for which

| Aoru(s)
<h
Acpu(s)
(&) For topological recursion, using any alphabet of size =2, there are infinitely many
sirings for which
|B0ru(s)| _ 1
—<z+h
|Acer(s)| 3

Proor. Since a compressed pointer may always be converted to an original
pointer, it follows that for any string s, | Acpm(s) | = | Acem(s) | independently of what
restrictions are made. (a) follows trivially from Theorem 3, since for the string s = o”,
| Aopm(s)| = p + | but | Ace(s)| is o(plogan).

Let us now consider (b). For 7 a multiple of p define

npo
sn = a"b" I (@¥b"00P),

=1

* Remember that with compressed pointers, all recursion must be topological.
M Similarly to Theorem I(a), the bound of B is just an .approximation for the expression min{p-
|togal] £|/9)| + i:p < i = 2p}, and it is this value that is achieved exactly by infinitely many strings.

Data Compression via Textual Substitution N9
Using the OPM scheme, s, can be represented by the compressed form

a/p

tMMn—ip+Ln+p),

=]

where t is the best compressed representation of a'b”. Snce || = O(plogn), we
have | Aopm(ss)| = p(a/p) + O(plogen) = n + O(plogen). On the other hand, if we
attempt to factor s, using the CPM scheme, a shortest compressed form is

n/p
ab*"[[n—ip+1,n+p),

=1
that is, the leading factor of a"b" is preserved intact. Here the n/p pointers to the
right of a"b" that point into a"b” "chop up" a"b" so that it cannot be factored with
compressed pointers; that is, if a"b" were factored, then at least some of (he pointers
to theright of a"b" would be pointing to "part of a pointer" which is not alowed for
compressed pointers. Through the analyss of severd cases, it can be shown that the
above compressed form is the best possible, and thus | Acpm(s»)|= 3n. Hence, for any
red h >0 we have, for sufficiently large n,

| Aopm(sn) | _r + O(plogzn) <1
| Acpmisn) | 3n -3

We do not yet know whether the bound in (b) is the best possble. Also, it should
be noted that athough |Acem(s)| = |Acem{s)|, in principle it is possible for a
compressed pointer to require less space than its corresponding origind pointer Snce,
for agiven string s, compressed pointers may point to smaler strings.

We now consider performance bounds concerning pointer direction. Firg, it is
obvious that using ether the CPM or OPM schemes, for any string s,

(1} {AL(s}| = | Ar(t) | where £ is the reverse of 5
() 1aL(H, [Ar(s)] = |Aun(sH = |As)].

In view of this, we shdl not bother to state "dud" theorems, that is theorems that
may be obtained from a previous theorem by changing al occurrences of Ar(s)to
AB(S), efc.

Before proceeding we present a short technica lemma that dlows us to relate
results concerning left versus right pointers to results concerning unidirectiond versus
bidirectiona pointers.

+ h. a

LEMMA 1 Using any macro scheme, for a given alphabet Z,if there are infinitely
many strings s over Zfor which |Az(s)|/|Ar(s)| < h, then there are infinitely many
strings s over an alphabet X', where | £’ = 2| X|,for which

|Aao(s)| __2h
|Aup(sH) L+ &

PROOF. Given adring s over an dphabet = = { ay,..., a,} for which |Au(s)|/
[AR(S)| < b, let ' = {a1, ..., a,} be new symbols not in X, and let S’ = st, wheret

isthe reverse of the string obtained by replacing each symbol a.in sby a/.ltis easy
to check that

|4en(sH] _ 2 min{[Aw(s)], [Ar(5)})
|Aun(s)| ™ |Aus) + |8r()]
b
P+ R
and that s iswritten over an aphabet of Sze 2{Z|. O

940 J. A. STORER AND T. G, SZYMANSKI

THEOREM 7. Let OPM/TR denote the OPM scheme restricted to topological
recursion. For any real h > 0:

(a) There are infinitely many strings s for which

|Acemyr(s)] 1
_— -+]
|Acearals)| 2

(b) Using any alphabet of size 2 or more, there are infinitely many sirings s for which

IAOPM/R(S)|<max{1 P }+h

| Aopasi(s)| p+2
and
| AorayTrR(S) | 1
|dors/rriafs)| 3
ProOF

(a) For any integer # > 1, let

n=1 n-1

T ()9):
=] =1

FALI

where 1, ; = []z.; a%. Using right pointers, each 1, except #,-1,1 can be replaced by a
pointer into #,_11. Hence we have

=1

| Acem/m(sn)| = (Z ip) +np+n—1

=2
= }pn® + O(pn).

Using left pointers, the target of a pointer must be a substring of the compressed
form of ¢, for some i and j. This is because for each ¢.; and ¢, .4, if @ is the last
character of ¢, , and & the first character of ¢ ., the string @b occurs nowhere else in
5. (in addition, the b,’s separate .., and siy1,1). Thus, since f,; cannot be a substring
of t., ifi<xori=x & y < j, we have

n—1
|Acemlsn)| = (Z 2tp) +n—1

-1
= pn’ + O(pn),
and hence for sufficiently large n,
| Acpmm(ss)| - pﬂ2/2 + O(pn) <l
|Acemaf(ss)| pn*+ O(pm) 2

(b) Let us first consider topological recursion. For n > 0 let

+ h.

n+1
s =[] a®b®.
=l
Since §, can be factored by replacing each string a¥*b%, 1 < i < n, by a pointer into
the string a™*12pM+1P it follows that

[Aopm/r(sn)| = pn + O(plog:(pn)).

Data Compression via Textual Substitution 941

The key observation for calculating |Aopm/L(sn)| is to note that the largest possible
factor to the left of 2?h%, 1 <i=< n + 1, is a* 175" V7, From this reasoning it follows
that | Aopm/L(sn)| = 3pn + 2p. Hence,

| Sorma/r(sn)| _ 1

+ h
[Aoemsi(sa)] 3

for sufficiently large n.

The construction for nontopological recursion is the same, except that we now
have the option of wriling @'b’ as aqbg., where ¢, and ¢. are the appropriate
pointers.]

CoroLLARY 7.1. The bounds § + h, max{}, p/(2p + 2)} + h,and 1 + h stated in
Theorem 7 are for left versus right pointers. If, instead, unidirectional and bidirectional
pointers are compared, then the bounds % + h, max{}, 2p/(3p + 2)} + h,and } + h
follow. Furthermore, the alphabet sizes needed are at most double the sizes stated in
Theorem 7.

Proor. Follows directly from Lemma 1. [

We do not yet know whether the bounds of Theorem 7 are tight. One technique
for deriving lower bounds on ratios concerning pointer directions is to consider the
overlapping content of a compressed form. We have not been able to use this to prove
or disprove that the bounds of Theorem 7 are tight, but the concept of overlapping
content does lead to some interesting ideas. We digress and consider this in relation
to the CPM scheme.

Definition 8. The overlapping content of a pair of pointers ¢, and g, for poinier
size p is given by
0 if ¢ and g, do not strictly overlap,
OVCON(g:,, ;) =<k if ¢ and ¢, strictly overlap by <p characters,
? if g, and g, strictly overlap by =p characters,

and the overlapping content of a compressed form ¢ is given by

[CAN =
THEOREM 8. For any string s,
{ACPM/L(S)l < |Aceu(s)| + OFCON(Acrad(s)).

Proor. For a string s, given Acpm(s) (or any compressed form for), all strict
overlapping can be removed to obtain a new compressed form # for s as follows:

while there 15 a string wvw such that wy is the target of some pointer ¢, and vw is the target of some
pointer g, do
Replace ¢, by guq. where

u if |ul=p,
=
g . .
a pointer to u otherwise,

L if |vl=p,
**1a pointer to v otherwise.

The reader can check that |7]| < | Acem(s)| + OVCON(Acrm(s)).
We now describe how to convert ¢ to a left pointer CPM compressed form for s
without increasing its size.

942 J. A. STORER AND T. G. SZYMANSKI

Sort the pointers in r topologically as ¢, ..., g» 50 that .. | < § = n, is not poinied fo (direcily or
indirectly) by any g;, i < j < n. Since we are allowing substring overlapping, we assume that if g, points
to wvw and ¢ points 1o v, then i < j. Now, starting with ¢s, do the following to each pointer g.. If ¢, points
to the left, do nothing. Otherwise, if ¢, points to a string w to its right, swap ¢, with w and adjust all other
pointers accordingly; that is, all pointers that point to some substring of w must be changed to point to this
substring in the new position of w.

The key point in verifying that the above procedure works is that at the ith stage,
pointers ¢, through ¢, , are not disturbed. O

Since OVCON(Acem(s)) can be as large as O(|s|?), it is possible for Theorem 8 to
yield very poor bounds. However, this is not always the case, as seen by the following
example.

Example 1. A CPM compressed form ¢ has simple overlapping if each pointer in
¢ strictly overlaps with at most one pointer to its right and one to its left. Let
CPM/S0 denote the CPM scheme restricted to simple overlapping. A CPM/SO
compressed form with # pointers has at most n — 1 strict overlaps. Thus, since the
construction of Theorem 8 preserves simple overlapping, for all strings s,

{Acem/ryso(s)| = | Acemssofs)] + OVCON(Acrm/sols))
<np+(n— 1y
< 2| Acemyso(s)|. O

We now turn our attention to the complexity of optimally compressing strings
using the internal macro model. Unfortunately, like the EPM scheme, optimal
enceding for the CPM scheme appears to be intractable.

THEOREM 9. Given a siring s and an integer K, it is NP-complete to determine
whether | Acea(s)| = K even when any combination of the restrictions to unidirectional
pointers, no recursion, and no overlapping is made. Furthermore, this is true regardiess
of whether the pointer size p is part of the problem input or is constrained to be a fixed
integer greater than 1.

Proor. First let us assume that overlapping is forbidden. In this case we can
use a construction similar to that used for Theorem 1(b) and (d). Let G = (V =
{v,....va}, E={es, ..., em}). K be an instance of the node cover problem and, as
in the proof of Theorem 1 let 3 be a special symbol, and let @ denote a new, distinct
symbol each time it occurs. Now, for e, = (v, w) in E, let E, = S¥?7 '8} 's, and let
5= Hl-l Ez@

We claim that G has a node cover of size K if and only if [A(s}| < |s]| + K—m. If
G has a node cover X of size K, then for each node in X we can associate an E, in s
(which will not get factored), and for all remaining m — K E;’s we can replace exactly
one string of the form $v,$ by a pointer. Thus |4(s)| < |s| + K — m. The proof of the
converse is very similar to that used in Theorem 1(b) and (d), and we omit the details.
As with Theorem 1, the above construction works independently of whether recursion
is allowed (since the largest factor has length p + 1). In addition, the left, right, ot
unidirectional pointer restrictions cause no problem. For example, if we are restricted
to left pointers, we consider nodes in X one at a time and associate each with the
leftmost “unassociated” E. containing it,

When overlapping is allowed, we can use the same construction as above, except
that we let G, X be an instance of the l-rode cover problem which is defined as:
Given a graph G and integer X, is there a set of X or fewer edges in & such that every
edge in G is adjacent to at least one of these edges? The 1-node cover problem can
be shown to be NP-complete as follows. For G = (V = {» --- w}, E =

Data Compression via Textual Substitution 943

{er +++ ex}), K an instance of the node cover problem, construct the graph G’ =
(V', E’), where V" is V together with the new nodes x. and y,, | =i=K,and E'is E
together with the new edges (v., x;) and (x,, »), 1 Si=<nand 1 = j< k. Then G has
a node cover of size K if and only if G” has a node cover of size K.

The only remaining case is the CPM scheme (with or without recursion) with one
of the pointer direction restrictions. This requires a separate construction which
appears in [30] for the case p= 5. D

The situation for the OPM scheme is much better. Although, at the time of the
writing of this paper, the status of the encoding complexity of the OPM scheme with
bidirectional pointers remains open,'® we shall show that the unidirectional case can
be done in linear time.'* Lempel and Ziv in [12] (and also in [39]) have developed a
data compression algorithm that falis within the framework of our OPM scheme
restricted to left pointers and topological recursion. (As we shall see from the proof
of Theorem 11, a linear-time encoding algorithm for left pointers implies a linear-
time encoding algorithm for unidirectional pointers.) Rodeh et al. [24) have presented
a linear-time implementation of the Lempel-Ziv algorithm using the techniques of
[15}." Their implementation can most simply be described as a one-pass greedy
algorithm. At each step the longest possible prefix of the remaining input that
matches some substring of the previously read input is removed from the input and
replaced with a pointer. For example, if we have already processed ababc and the
rest of the input is abcd, then we would output the pointer (3, 3) and delete the next
three characters of the input. The Lempel-Ziv algorithm is asymptotically optimal
for ergodic sources as the length of the source string tends to infinity; however, for
individual finite strings the compression achieved can be far from optimal.

TueoreM 10. Let LZ(s) denote the compressed form of s obtained by applying the
Lempel-Ziv algorithm. Then for any string s,

i p=1, then |LZ(5)| =|Adors/rr/L(5)],

V4 | dormyrr/i(s)]

=1L
p-1 | LZ(5)]

if p>1, then

Furthermore, for any real number h > 0 it is possible to construct a string s over a fwo-
symbol alphabet such that | Aoraryrr/(s)| /| Brz(s)| = (p + 1)/2p + k.

Proor. Without loss of generality we can assume that in any minimal-length
compressed form, any substring that is represented by a pointer to an earlier
occurrence is as long as possible; that is, if 5., - - - s, is represented by a pointer, then
Sm + -~ Sn+1 15 DOt a substring of 51 - - - Sm-1. Otherwise we could obtain an equivalent
compressed form of the same or shorter length by changing the pointer to represent
Sm + - - Sn+1 and then either deleting a character (if the pointer was originally followed
by a character) or changing the following pointer (if the pointer was ariginally
followed by another pointer).

Let 5 be any string, and consider ¢ = Aopwm,tr/L(s) and u = Arz(s). Form the finest
partition of r and « into segments ¢ = £, --- tn and ¥ = u; - -+ U, such that for 1 =

'5 Recently, 1t has been shown by J. Gallant (in lus Ph D. dissertatton, “String Compression Algorithms,”
Princeton Unuversity) that this problem 1s, in fact, NP-complete

'“ Nate that as with the CPM scheme, encoding for the OFM scheme with either or both of the recursion
and overlapping restrictions (with umdirectional or bidirectional pomters) is NP-complete. A proof of this
may be found in [30]

' In addition to [15}, the mierested reader should refer to [2, 11, 18, 22, 29, 36]. Also, a good introduction
to the ahove work 15 contamned 1n [1]

944 J. A. STORER AND T. G. SZYMANSKI

Ficurs | A 9 [X:] § Txa]---
o | N [i rz [yv:T Fs .-

J = m, t; and u; represent the same substring of 5. In order to establish the bounds
quoted in this theorem, it is sufficient to show that

[a] ={m| =1,

P Il e g
p—1" |ul /
By definition of the Lempel-Ziv algorithm, it is impossible for some 1, to begin with
a pointer while ¢, begins with a character. We therefore have one of the following
cases:

(1) 4 and 4 both consist of a single character.

(2) 4 and u, both consist of a single pointer (which represent identical strings by the
optimality principle stated at the beginning of the proof).

(3) ¢ begins with a character, and u; begins with a pointer.

In the first two cases, |4| = |4,| = 1, and their ratio falls within the desired bounds.
‘We must therefore establish the bounds for case (3). Let us write

tj == X1q1x2q2 L anmxn+ls
W=ryre)s <« 'mlm

where each of the x,’s and y.’s is a string of zero or more characters and the ¢.’s and
r’s are pointers.

A key observation is that any subsiring of s that is represented by characters (as
opposed to pointers) in either 4 or 4, must be represented by a pointer in the other.
This is true because of our definition of ¢, and #; in terms of a finest possible partition
of ¢ and u. Figure 1 suggests the structure of that portion of s represented by 4 and
u,. Notice that for each i, | =< i < n, ¢, represents at least the last character represented
by ri, all of y., and at least the first character represented by #.... Also, for 2 < i=<m,
r, represents at least the last character represented by ¢.—1, all of x,, and at least the
first character represented by g,. To verify the above facts, depicted in Figure 1, it is
sufficient to observe that except at the end, if ¢, starts within r,, then g, must go
beyond the end of r,, since if ¢, ended earlier, then ¢; would not be as long as possible
(as we assumed at the start of the proof), and if ¢; ended at the same place, we would
not have the finest possible partition. Similarly, if r, starts within a g,, then r, must go
beyond the end of ¢,, since to end earlier would imply a violation of the Lempel-Ziv
greedy rule, and to end in the same place would violate the finest partition.

Let us summarize some important observations about Figure 1:

(1) Eitherm=norelsem=n+ 1.

(2) Forl=i=a+1,|x| = p, or else we could replace x; with a pointer to some
earlier occurrence in s, thus reducing the length of r by at least one in contradic-
tion to our definition of ¢ as a compressed form of minimal length.

(3) Forl=i<m,|y|=p— 1, or else the Lempel-Ziv algorithm would have used
a pointer instead of y,.

@ |yml=p.

A number of cases now arise.

Data Compression via Textual Substitution 945

Case 1. Suppose that n = m. Since ¢ contains exactly » pointers and at least one
character from xi, we have {4,| = #p + 1. Now consider u,, which also has exactly
pointers. Since each of the y, (except possibly y,) has no more than p — 1 characters,

lyl=mp+n—-Dp~-D+p=n2p— 1)+ 1L

Thus
Il _mal g
|| n(2p—1+1 2p-—1

Case 2. Suppose that m = n + | and x,. is the empty string. Thus both £ and
i, end in a pointer. It is not hard to see that y,—1 must also be empty, or else the
Lempel-Ziv algorithm would have replaced the string represented by ym-1rm by a
single pointer. Thus », contains exactly n + 1 pointers, || < p — L for l =k
sn—1,and | ya| = | prr1| = 0. Hence,

ly|l=(n+Dp+@E—-—1p—-1D=02p—ba+ L
Once again we have

W, wel s
l#] n2p-1)+1 2p—1

Case 3. Suppose that m = n + 1 and x4 is not empty. By our definition of ¢ and
in terms of a finest possible partition, it must be the case that y,.1 is the empty
string. Also, since the string represented by g, extends at least (p + 1) — |xn41l
characters past y., it must be that | y»| < |xa11|; otherwise, the presence of ¢, implies
that the Lempel-Ziv algorithm must place a pointer directly after r, (i.¢., | ya| = 0).
Thus we have

] " ap=1D+|p|+1" n2p-D+1 2p—-1Vt

|t,i> np + |xpa] +1 mp+1 . _P

In all of the above cases we have shown that |7 |/|y| = p/(2p — 1). Since we are
using left pointers, it must be that # and u; contain no pointers (and so |# | = [u1]).
Thus |¢} = |u| for p =1, and |¢|/|u|> p/2p — D for p> 1.

For any p > 1, using only a two-symbol alphabet, we can approach the lower
bound of p/(2p — 1) as follows. For k = 0, let n = (p + 1)2* — 1 and

n-p
sn=ab™ab™' T (ab"ab™™*).

=0
It is easy to check that
|dopm/rr/(sa)| _(k+2p+ D+ (m=p)p+ 1)
| Arz(se} k+2p+ 1D+ (n—p2p
- ni(p + 1) + O(plogs(n))
n(2p) + O(ploga(n))
g+l
— 2p
Forp=1,p/2p—1)=(p+ 1)/2p = |, and as p gets large, both quantities converge
to 4. Nevertheless, for p > 1, p/(2p — 1) is strictly less than (p + 1)/2p, and so we are

left with a small “gap.” At the time of the writing of this paper, this gap has not been
resolved. [

as n-— o,

946 J. A. STOKER AND T. G. SZYMANSKI

Theorem 10 shows that as p gets large, the word-case performance of the
Lempd-Ziv dgorithm does not compare favorably with that of Aopm,Tr/- The next
theorem shows that if we compare the performance of the Lempd-Ziv dgorithm
with that of Acem, the disparity becomes even grester.

THEOREM 11 For all strings and any pointer size p,

| Aoparsr{s)

0<
| Arz(s)|

=1,

and the above pounds are tight.
PROOF. Thisisadirect consequence of Theorems5and 1 0C1

Although the Lempd-Ziv dgorithm is not optimal for the OPM/L scheme even
when it is restricted to topologica recursion, the next theorem shows that a linear-
time agorithm does exist for optimally compressing strings using the OPM scheme
restricted to unidirectiona pointers of any dze (independent of whether topologica
recursion is used). In view of the number of NP-completeness results presented thus
far, this is a pleasing result, egpecidly since the OPM scheme has many practical
applications.

THEOREM 12. For any string s, Aeru,un{s) Can be constructed in linear time (on a
RAM).

PROOF. Givenastrings= s, *** S, Acem/a(s)may be computed by performing
the following seps (note that SHORT[] and MATCH][] are arrays of strings):

A: Let MATCHIK], | < k = n, be the longest string s, -+« ysuchthats<kand s -+« & = 5 « -+ Shep
Also, fet g, denote a pointer to MATCH{X].
B: SHORT{n + 1] = {(empty string)
C: doi=n—1talby—I;
if MATCH[] = (empty string) them SHORT[{] = &,SHORT{/ + 1]
else SHORT{i] = min(sSHORT{} + 1], ¢.SHORTI: + | MATCHIi] (]}
D: Aopma(s) = SHORT(1]

The dgorithm is a dynamic programming agorithm which utilizes the optimality
principle stated at the beginning of the proof of Theorem 10. Each string SHORT]]
computed by the agorithm is the shortest compressed form for s, - - - s, given that
5L -+ 8- IS avalable as a "dictionary. " By using the appropriate data structures,
gep A can be performed in linear time using adight generdization of the agorithm
destribed in [23]. To perform gep C in linear time, we note that the array
SHORT can be represented by gtoring at SHORT]i]s (or g;) followed by a pointer
to SHORTJi + 1 (or SHORT[i + [IMATCHI[i] [1). In step D we can eadily write out
SHORT[Y] in linear time by following the sequence of pointers through the array
SHORT. Hence the entire adgorithm to compute Aopm(s) runsin linear time,

To compute Aopm,up(s), We can compute Aopm/r(s) USing the above agorithm on
the reverse of sand then Acem/un(s) = min{Aoem(s), Aoemm(s)}. O

It should be noted that the Lempel-Ziv scheme uses the same decoding agorithm
as any other unidirectional OPM scheme, and s0 the decoding complexity of our
method is the same as that of Lempd-Ziv.

5. Internal Versus External Schemes

Although a number of bounds have aready been given on the relative performance
of various pairs of compression methods, we have yet to compare the effectiveness of

Data Compression via Textual Substitution 947

the external schemes to the internal schemes. We shall now present a few resulis of
this kind. In order to avoid trivial comparisons, we shall require that both schemes
under comparison allow recursion if either does (otherwise the relative performance
goes to zero). This will cause us to consider schemes that are not particularly natural
(internal schemes with nonoverlapping pointers, etc.). The purpose of comparing,
say, the EPM scheme without recursion or overlapping to the CPM scheme without
recursion and overlapping is not to propose the CPM scheme without recursion and
overlapping as a useful scheme, but rather to give some insight with regards to the
relative performance of internal and external schemes. The first theorem of this
section considers schemes without restrictions.

Tueorem 13. For all strings s,

(@) 3 Acea(s)| < |Arem(s)| = | Acerm(s)| + p,
(B) }|Aoru(s)| < |Aozrm(s)| = |Aora(s)| + p,

regardless of whether topological recursion is assumed. Furthermore, for any real
h > 0, there are infinitely many strings over a two-symbol alphabet for which the bound
of 3 + h can be achieved for (b) and infinitely many strings over a K = 2 symbol
alphabet for which the bound of (2K — 1)/(3K — 2) + h can be achieved for (a).”

Proor

(a) The proof of the second inequality is trivial since Acpm(s) may be used as the
external dictionary. Let us now demonstrate the bound of £ In what follows, for
strings uv and vw (v may be the null string), uv — vw denotes w and uv + vw denotes
v. For a string s, consider Agpm(s) = so#s,. Write so as so = [[*1 i, Where 7, is the first
factor in sp and r,, 2 < i < k, is -1 — z, where z is a substring of s, satisfying the
following two conditions:

(1) zis a factor in 5, that either overlaps with r.—; or starts directly after .- (ie., z
is a factor in 5, and r,—; — z is well defined),

(2) There is no other factor in s that satisfies condition 1 and extends further to the
right in s, than z.

Since (by definition) Agpm(s) is a minimal-length compressed form, the partition of
5o as described above is well defined. Furthermore, by construction the following two
facts hold:

(1) The set {R.:r. is a compressed form for R.} is a set of nonoverlapping substrings
of 5.
{2) Each factor in & is, for some i, a substring of the string r;, r,41.

It is possible 1o construct a CPM compressed form ¢ for s from s as follows:

All characters {1.e., ronpomters) in s, are left intact. Find a pointer ¢ in sy with ry as its target, and replace
qby r For 2 =i=k, find a pointer ¢ in 5 with a target z satisfying r. = r.; — z, and replace ¢ by ¢'r,
where ¢ is a pointer to r,_, + z. All other pointers ¢ in 5 point to a substring of 7.5,+1 for some # and may
be replaced by two pointers in the obvious way.

It is possible that for some strings, the substitutions described above cause some
pointers to have targets of size p or smaller. If this is the case, we can reduce the size
of ¢ by deleting pointers of this kind and substituting in the targets. Similarly, it may
be possible to reduce the size of 1 by finding adjacent pairs of pointers that we created
as described above and find a new target such that the pair of pointers can be

18 Note that this implies that the bound of 2/3 is tight for unbounded size alphabets,

948 J. A. STORBR AND T. G. SZYMANSKI

replaced by a single pointer together with less than p characters, Since we are looking
for a worst-case ratio (which we show to be tight shortly), we can assume that it is
not possible to shorten s in the two ways described above. Having made this
assumption, it is not hard to show that for a worst-case ratio it must be that | 5| = pa,
where # denotes the number of pointers in s;. Thus, if we let m denote the number
of characters in 5,, we have

[Azem(s)| _ [Amem(s)| pn+m + | 50}

IACPM(S”_ |7] _an+m+|.m|
S pntlnl 2
2pn + |sa] 3

A more careful analysis shows that the above inequality must be a strict inequality
(ie., >, not =).
We now show the bound of 2 to be tight. Let us first see how a bound of § may be
achieved with a two-symbol alphabet. For n 2 multiple of p let
5 = I a®bm-e-1e
i=1

Using the EPM scheme, s, can be written as

n/p

a"# [[(n—ip+1,n+ p),

=]
and so it follows that | Agpm(sa)| = 3n. On the other hand, if we attempt to factor s,
using the CPM scheme, a shortest compressed form for s, is

n/p—1
a"b"(I ql,.qz,.)a"b”,
=2

where ¢1, denotes a pointer into ¢" and ¢, denotes a pointer into b". Hence
| Acpm(sa)| = 4n + O(p), and a bound of § follows.

For a K = 2-symbol alphabet we can generalize the above construction by defining

K-1 n
Sn = a{”ai‘"””"’),

and the bound of 2K — 1)/(3K — 2) follows. In addition, if we let K = f(n) for any
unbounded function f, then the bound of § follows for an unbounded alphabet size.

(b) For a string s we can consider Aogpm(s) = s5o#s, and proceed in a fashion
analogous to the proof of part (a), the only difference being that this proof is a bit
simpler, since we cannot make any claims about | so|. This is because with original
pointers, pointers indicate the decompressed form of s, not s, itself; thus so can be
very small compared to the number of pointers in 51. Hence, using the notation of
part (a),

| Aorrm(s) | >ﬂ =1
| AopM(S) I an 2)
This bound may be shown tight (even for two-symbol alphabets), as follows. For
rn>0let
n/p
s = [[a®b> V2,
=1

Using an external dictionary of a"h”, it is easy to see that |Aogpm(sn)| = n +
O(ploga(n)), regardless of whether topological recursion is used, whereas it is easy to

Data Compression via Textual Substitution 949

check that j Aoem(ss) | = 27, regardless of whether topological recursion is used. Thus
the bound of { is approached arbitrarily dosdy asn gets laage. O

We now turnour attentionto boundsconcerning restricted schemes Inparticular,
we congder overlgpping and recursion restrictions.

THEOREM 14. Let Asvrdenote an internal scheme (CPM or OPM) and Agxzan
external scheme (EPM or OEPM). Furthermore, if Avr and Agxrare used together,
then both refer to compressed pointer schemes or else both refer to original pointer
schemes. Thenfor all strings s,

(@) % <|Bexr(s)|/]|Adinr{s)} = 3 when recursion isforbidden.
(ft) 1=<|Aexr(s)|/|Amvr(s)| = 3 when overlapping is forbidden or when both recursion
and overlapping areforbidden.

Furthermore, these bounds are tight.

PROOF

(& When recursion is forbidden, compressed and origind pointers are equivaent,
and so without loss of generality we consider the CPM scheme. Thefact that 4 isa
tight lower bound follows from a proof very smilar to that of Theorem 13. We now
show that 3 is a tight upper bound. It is not hard to show that we need only congder
gtrings ssuch that for some string r and integer k = 1,

&
Acem(s) = r][] qu,
=1

where ¢ denotes a pointer to some substring of r. Using r as the dictionary for the
EPM scheme, s can befactored usng k + 1 pointers. Thuswe have

[Aexr(s)] _ [dzemis}] _ || + (K + L)p

ANT(s}| JAcem(s} — ||+ kp
L+ 4
Irl+p 3

The string & attains this bound.

(b) It is easy to see that 1 is atight lower bound. Given Agxt(s) = SHS, a
corresponding internal compressed form t for s may be formed by "hoiding up” s
into s; with the following agorithm (this works independently of whether topologicd
or nontopological recursion is present):

A: Let r = 5 and label all pointers “unmarked.”

B: while there is an unmarked pointer ¢ in / do
Replace ¢ by its target and replace all other unmarked pointers in 7 that have the same target as
4 by a marked pointer 1o their target in 7.

The (tight) bound of 3 follows by an argument similar to that given in the proof of
pat (8. O

6. Conclusion

We have investigated various aspects of the macro modd for performing data
compression by text substitution. Results have included NP-completeness theorems
on the complexity of finding the most compact encodings for severd different macro
schemes, relative performance bounds on many pairs of schemes, and a linear-time
agorithm for performing optimum compressons for one of the more practica

950 J A. STORER AND T. G. SZYMANSKI

schemes. AII of the schemes we have presented have efficient linear-time decoding
dgorithms™ and many restricted forms of these schemes have redl-time decoding
agorithms that require only a smal amount of random access memory. The same
decoding dgorithm may be used independently of whether the compressed form is
of minimal length. Thus, NP-completeness results indicated in this paper should not
discourage further investigation of these schemes. It seems likely that fast and
effective approximation agorithms for compressng strings exist for many of the
macro schemes with NP-complete encoding complexities. In addition, a number of
further results that we have not discussed in this paper lead to polynomia-time
compression adgorithms for various restricted forms of these problems.

ACKNOWLEDGMENTS. The authors are grateful to J. D. Ullman for helpful comments
and to J. Gdlant for his criticd reading of the paper and for providing a shorter
proof of Theorem 2 for thecaep = 1

REFERENCES

1 AHO, A. V., HOPCROFT, J. E, AND ULLMAN, J D. The Design and Analysis of Computer Algorithms.
Addison-Wedey, Reading, Mass, 1974.

2. BOYER, R.S. A fast string searching algorithm Common. ACM 20, 10 (Oct. 1977), 762-772.

3. COOK, S A The complexity of theorem proving procedures. Proc. 3rd Ann. ACM Symp. on Theory
of Computing, Shaker Heights, Ohio, 1971, pp. 151-158.

4. GALLANT, J, MAIER, D., AND STORER, J. A. On finding minimal length superstrings. J. Comput. Syst.
Sci. 20(1980), 508,

5. GAREY, M.R., JOHNSON, D.S., AND STOCKMEYER, L. Some simplified NP-complete problems. Theor.
Comput. i. 1 (1976), 237-267.

6. HAGAMEN, W.D., LINDEN, D.J, LONG, H.S, AND WEBER, JC. Encoding verba information as
unique numbers. IBM Syst. J. 11 (1972), 278-315.

7. HAHN, B . A new technique for compression and storage of data. Commun. ACM 17, 8 (Aug. 1974),
434-436.

8 HUFFMAN, D. A. A method for the congtruction of minimum-redundancy codes, Proc. IRE 40 (1952),
1098-110L

9. KARP, R. M. Reducibility among combinatoria problems. In Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, Eds,, Plenum Press, New Y ork, 1972, pp. 85-103.

10. KNUTH, D.E. TheArt of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed. Addison-
Wedey, Reading, Mass,, 1973.

11. KNUTH, D. E, MORRIS, J H., AND PRATT, V. R. Fagt patern matching in strings. SAM J. Compt.
6, 1 (1977), 323-349.

12. LEMPEL, A., AND ZIV, J. On the complexity of finite sequences. IEEE Trans Inf. Theory IT 22, 1
(1976), 75-81.

13 LESK, M.E. Compressed text storage. Unpublished Tech. Memo., Bell Laboratories, Murray Hill,
N.J, 1970

14. MCCARTHY, JP. Automatic file compresson. In International Computing Symposium, North-Hol-
land, Amsterdam, 1973, pp. 511-516.

15 McCREIGHT, E M. A space-economicd suffix tree construction algorithm. J. ACM 23, 2 (Apr. 1976),
262-272.

16. MAIER, D. The complexity of some problems on subsequences and supersequences. Conf on
Theoreticd Computer Sdence, University of Waterloo, Waterloo, Ont, Can., 1977, pp. 120-129

17. MAIER, D., AND STORER, J. A. A note on the complexity of the superstring problem, Proc 1978 Conf.
on Information Sciences and Systems, Bdtimore, Md., 1978, pp. 52-60.

18. MAJSTER, M. E. Efficient on-line construction and correction of position trees. Tech. Rep. TR79-393,
Dep. of Computer Sdence, Corndll Univ., Ithaca, N. Y., 1979.

19 MARRON, B. A, AND DE MAINE, P. A. D. Automatic data compresson. Commun. ACM 10, 11 (Nov.
1967), 711-715

20. MAYNE, A., AND JAMES, E.B. Information compression by factorizing common strings. Comput. J.
18, 2 (1975), 157-160

® The decoding algorithms presented in Definitions 1-4 are used because they are smple to state, not
because they are the most efficient agorithms

Data Compression via Textual Substitution 951

21.

2

2

24.

25
26

21.

28.

30.

MORRIS, R,, AND THOMPSON, K. Webster's second on the head of a pin. Unpublished Tech, Memo,,
Bell Laboratories, Murray Hill, N. J,, 1974.

PRATT, V.R. Improvements and applications for the Weiner repetition finder. Lecture notes, 3rd
revision, 1975.

RODEH, M, PRATT, VR, AND EVEN, S. A linear-time agorithm for finding repetitions and its
application to data compression, Tech Rep. No. 72, Dep of Computer Sci., Technicon, Israel, 1976.
RODEH, M., PRATT, V.R, AND EVEN, S Linear algorithm for data compression via string matching.
J. ACM 28, 1 (Jan 1981), 16-24.

RUBIN, F. Experiments in text file compresson. Commun. ACM 19, 11 (Nov. 1976), 617-623.
RUTH, S S, AND KREUTZER, P.J. Datacompression for large businessfiles. Datamation 18, 9 (1972),
62-66

SEERY, JB., AND ZIV, J. A universa data compresson algorithm. Description and preliminary
results. Unpublished Tech. Memo., Bell Laboratories, Murray Hill, N.J, 1977.

SEERY, J.B., AND ZIV, J. Further results on universal data compression. Unpublished Tech. Memo.,
Bell Laboratories, Murray Hill, N.J,, 1978.

. SEIFERAS, J. Subword tress. Lecture notes, 1977

STORER, JA NP-completeness results concerning data compression. Tech. Rep. 234, Dep. of
Electrica Engineering and Computer Science, Princeton Univ., Princeton, N. J., 1977.
STORER, JA. PLCC—A compiler-compiler for PL1 and PLC users Tech. Rep. 236, Dep. of
Electrica Engineering and Computer Science, Princeton Univ., Princeton, N. J, 1977.

. STORER, J. A. Daa compresson: Methods and complexity issues Ph. D. Dissartation, Dep. of

Electrical Engineering and Computer Science, Princeton Univ, Princeton, N.J, 1978.

. STORER, J. A., AND SZYMANSKI, T. G. The macro model for data compresson. Proc. 10th Ann. ACM

Symp. on Theory of Computing, San Diego, Cdif, 1978 (extended abstract).

. VISVALINGAM, M. Indexing with coded deltas—A data compaction technique. Softw. Pract. Exper

6 (1976), 397-403,

. WAGNER, R A. Common phrases and minimum-space text storage, Commun. ACM 16, 3 (Mar.

1973), 148-152

. WEINER, P Linear pattern matching algorithms. Proc. 14th Annual IEEE Symp. on Switching and

Automata. Theory, Ames, lowa, 1973, pp. 1-11L

. ZIV, J. Coding theorems for individual sequences |EEE Trams. Inf. Theory IT 24, 4 (1978) 405-412.
. ZIV, J, AND LEMPEL, A. A universd agorithm for sequential data compresson. |IEEE Trans Inf.

Theory IT 23, 3 (1977), 337-343.
ZIV, J, AND LEMPEL, A. Compression of individual sequences via variable-rate coding. IEEE Trans.
Inf. Theory IT 24, 5 (1978), 530-536.

RECEIVED JULY 1979, REVISED JUNE 1980, ACCEPTED JUNE 1981

Journal of the Association for Computing Machinery, Vol 29, No 4, October 1982

